Add DocGen tool with comprehensive documentation generation capabilities (#109)

* WIP: new workflow architecture

* WIP: further improvements and cleanup

* WIP: cleanup and docks, replace old tool with new

* WIP: cleanup and docks, replace old tool with new

* WIP: new planner implementation using workflow

* WIP: precommit tool working as a workflow instead of a basic tool
Support for passing False to use_assistant_model to skip external models completely and use Claude only

* WIP: precommit workflow version swapped with old

* WIP: codereview

* WIP: replaced codereview

* WIP: replaced codereview

* WIP: replaced refactor

* WIP: workflow for thinkdeep

* WIP: ensure files get embedded correctly

* WIP: thinkdeep replaced with workflow version

* WIP: improved messaging when an external model's response is received

* WIP: analyze tool swapped

* WIP: updated tests
* Extract only the content when building history
* Use "relevant_files" for workflow tools only

* WIP: updated tests
* Extract only the content when building history
* Use "relevant_files" for workflow tools only

* WIP: fixed get_completion_next_steps_message missing param

* Fixed tests
Request for files consistently

* Fixed tests
Request for files consistently

* Fixed tests

* New testgen workflow tool
Updated docs

* Swap testgen workflow

* Fix CI test failures by excluding API-dependent tests

- Update GitHub Actions workflow to exclude simulation tests that require API keys
- Fix collaboration tests to properly mock workflow tool expert analysis calls
- Update test assertions to handle new workflow tool response format
- Ensure unit tests run without external API dependencies in CI

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* WIP - Update tests to match new tools

* WIP - Update tests to match new tools

* WIP - Update tests to match new tools

* Should help with https://github.com/BeehiveInnovations/zen-mcp-server/issues/97
Clear python cache when running script: https://github.com/BeehiveInnovations/zen-mcp-server/issues/96
Improved retry error logging
Cleanup

* WIP - chat tool using new architecture and improved code sharing

* Removed todo

* Removed todo

* Cleanup old name

* Tweak wordings

* Tweak wordings
Migrate old tests

* Support for Flash 2.0 and Flash Lite 2.0

* Support for Flash 2.0 and Flash Lite 2.0

* Support for Flash 2.0 and Flash Lite 2.0
Fixed test

* Improved consensus to use the workflow base class

* Improved consensus to use the workflow base class

* Allow images

* Allow images

* Replaced old consensus tool

* Cleanup tests

* Tests for prompt size

* New tool: docgen
Tests for prompt size
Fixes: https://github.com/BeehiveInnovations/zen-mcp-server/issues/107
Use available token size limits: https://github.com/BeehiveInnovations/zen-mcp-server/issues/105

* Improved docgen prompt
Exclude TestGen from pytest inclusion

* Updated errors

* Lint

* DocGen instructed not to fix bugs, surface them and stick to d

* WIP

* Stop claude from being lazy and only documenting a small handful

* More style rules

---------

Co-authored-by: Claude <noreply@anthropic.com>
This commit is contained in:
Beehive Innovations
2025-06-21 23:21:19 -07:00
committed by GitHub
parent 0655590a51
commit c960bcb720
58 changed files with 5492 additions and 5558 deletions

View File

@@ -256,6 +256,7 @@ class BaseTool(ABC):
# Find all custom models (is_custom=true)
for alias in registry.list_aliases():
config = registry.resolve(alias)
# Use hasattr for defensive programming - is_custom is optional with default False
if config and hasattr(config, "is_custom") and config.is_custom:
if alias not in all_models:
all_models.append(alias)
@@ -345,6 +346,7 @@ class BaseTool(ABC):
# Find all custom models (is_custom=true)
for alias in registry.list_aliases():
config = registry.resolve(alias)
# Use hasattr for defensive programming - is_custom is optional with default False
if config and hasattr(config, "is_custom") and config.is_custom:
# Format context window
context_tokens = config.context_window
@@ -798,6 +800,23 @@ class BaseTool(ABC):
return prompt_content, updated_files if updated_files else None
def get_prompt_content_for_size_validation(self, user_content: str) -> str:
"""
Get the content that should be validated for MCP prompt size limits.
This hook method allows tools to specify what content should be checked
against the MCP transport size limit. By default, it returns the user content,
but can be overridden to exclude conversation history when needed.
Args:
user_content: The user content that would normally be validated
Returns:
The content that should actually be validated for size limits
"""
# Default implementation: validate the full user content
return user_content
def check_prompt_size(self, text: str) -> Optional[dict[str, Any]]:
"""
Check if USER INPUT text is too large for MCP transport boundary.
@@ -841,6 +860,7 @@ class BaseTool(ABC):
reserve_tokens: int = 1_000,
remaining_budget: Optional[int] = None,
arguments: Optional[dict] = None,
model_context: Optional[Any] = None,
) -> tuple[str, list[str]]:
"""
Centralized file processing implementing dual prioritization strategy.
@@ -855,6 +875,7 @@ class BaseTool(ABC):
reserve_tokens: Tokens to reserve for additional prompt content (default 1K)
remaining_budget: Remaining token budget after conversation history (from server.py)
arguments: Original tool arguments (used to extract _remaining_tokens if available)
model_context: Model context object with all model information including token allocation
Returns:
tuple[str, list[str]]: (formatted_file_content, actually_processed_files)
@@ -877,19 +898,18 @@ class BaseTool(ABC):
elif max_tokens is not None:
effective_max_tokens = max_tokens - reserve_tokens
else:
# The execute() method is responsible for setting self._model_context.
# A missing context is a programming error, not a fallback case.
if not hasattr(self, "_model_context") or not self._model_context:
logger.error(
f"[FILES] {self.name}: _prepare_file_content_for_prompt called without a valid model context. "
"This indicates an incorrect call sequence in the tool's implementation."
)
# Fail fast to reveal integration issues. A silent fallback with arbitrary
# limits can hide bugs and lead to unexpected token usage or silent failures.
raise RuntimeError("ModelContext not initialized before file preparation.")
# Use model_context for token allocation
if not model_context:
# Try to get from stored attributes as fallback
model_context = getattr(self, "_model_context", None)
if not model_context:
logger.error(
f"[FILES] {self.name}: _prepare_file_content_for_prompt called without model_context. "
"This indicates an incorrect call sequence in the tool's implementation."
)
raise RuntimeError("Model context not provided for file preparation.")
# This is now the single source of truth for token allocation.
model_context = self._model_context
try:
token_allocation = model_context.calculate_token_allocation()
# Standardize on `file_tokens` for consistency and correctness.
@@ -1222,6 +1242,220 @@ When recommending searches, be specific about what information you need and why
return model_name, model_context
def validate_and_correct_temperature(self, temperature: float, model_context: Any) -> tuple[float, list[str]]:
"""
Validate and correct temperature for the specified model.
This method ensures that the temperature value is within the valid range
for the specific model being used. Different models have different temperature
constraints (e.g., o1 models require temperature=1.0, GPT models support 0-2).
Args:
temperature: Temperature value to validate
model_context: Model context object containing model name, provider, and capabilities
Returns:
Tuple of (corrected_temperature, warning_messages)
"""
try:
# Use model context capabilities directly - clean OOP approach
capabilities = model_context.capabilities
constraint = capabilities.temperature_constraint
warnings = []
if not constraint.validate(temperature):
corrected = constraint.get_corrected_value(temperature)
warning = (
f"Temperature {temperature} invalid for {model_context.model_name}. "
f"{constraint.get_description()}. Using {corrected} instead."
)
warnings.append(warning)
return corrected, warnings
return temperature, warnings
except Exception as e:
# If validation fails for any reason, use the original temperature
# and log a warning (but don't fail the request)
logger.warning(f"Temperature validation failed for {model_context.model_name}: {e}")
return temperature, [f"Temperature validation failed: {e}"]
def _validate_image_limits(
self, images: Optional[list[str]], model_context: Optional[Any] = None, continuation_id: Optional[str] = None
) -> Optional[dict]:
"""
Validate image size and count against model capabilities.
This performs strict validation to ensure we don't exceed model-specific
image limits. Uses capability-based validation with actual model
configuration rather than hard-coded limits.
Args:
images: List of image paths/data URLs to validate
model_context: Model context object containing model name, provider, and capabilities
continuation_id: Optional continuation ID for conversation context
Returns:
Optional[dict]: Error response if validation fails, None if valid
"""
if not images:
return None
# Import here to avoid circular imports
import base64
from pathlib import Path
# Handle legacy calls (positional model_name string)
if isinstance(model_context, str):
# Legacy call: _validate_image_limits(images, "model-name")
logger.warning(
"Legacy _validate_image_limits call with model_name string. Use model_context object instead."
)
try:
from utils.model_context import ModelContext
model_context = ModelContext(model_context)
except Exception as e:
logger.warning(f"Failed to create model context from legacy model_name: {e}")
# Generic error response for any unavailable model
return {
"status": "error",
"content": f"Model '{model_context}' is not available. {str(e)}",
"content_type": "text",
"metadata": {
"error_type": "validation_error",
"model_name": model_context,
"supports_images": None, # Unknown since model doesn't exist
"image_count": len(images) if images else 0,
},
}
if not model_context:
# Get from tool's stored context as fallback
model_context = getattr(self, "_model_context", None)
if not model_context:
logger.warning("No model context available for image validation")
return None
try:
# Use model context capabilities directly - clean OOP approach
capabilities = model_context.capabilities
model_name = model_context.model_name
except Exception as e:
logger.warning(f"Failed to get capabilities from model_context for image validation: {e}")
# Generic error response when capabilities cannot be accessed
model_name = getattr(model_context, "model_name", "unknown")
return {
"status": "error",
"content": f"Model '{model_name}' is not available. {str(e)}",
"content_type": "text",
"metadata": {
"error_type": "validation_error",
"model_name": model_name,
"supports_images": None, # Unknown since model capabilities unavailable
"image_count": len(images) if images else 0,
},
}
# Check if model supports images
if not capabilities.supports_images:
return {
"status": "error",
"content": (
f"Image support not available: Model '{model_name}' does not support image processing. "
f"Please use a vision-capable model such as 'gemini-2.5-flash', 'o3', "
f"or 'claude-3-opus' for image analysis tasks."
),
"content_type": "text",
"metadata": {
"error_type": "validation_error",
"model_name": model_name,
"supports_images": False,
"image_count": len(images),
},
}
# Get model image limits from capabilities
max_images = 5 # Default max number of images
max_size_mb = capabilities.max_image_size_mb
# Check image count
if len(images) > max_images:
return {
"status": "error",
"content": (
f"Too many images: Model '{model_name}' supports a maximum of {max_images} images, "
f"but {len(images)} were provided. Please reduce the number of images."
),
"content_type": "text",
"metadata": {
"error_type": "validation_error",
"model_name": model_name,
"image_count": len(images),
"max_images": max_images,
},
}
# Calculate total size of all images
total_size_mb = 0.0
for image_path in images:
try:
if image_path.startswith("...
_, data = image_path.split(",", 1)
# Base64 encoding increases size by ~33%, so decode to get actual size
actual_size = len(base64.b64decode(data))
total_size_mb += actual_size / (1024 * 1024)
else:
# Handle file path
path = Path(image_path)
if path.exists():
file_size = path.stat().st_size
total_size_mb += file_size / (1024 * 1024)
else:
logger.warning(f"Image file not found: {image_path}")
# Assume a reasonable size for missing files to avoid breaking validation
total_size_mb += 1.0 # 1MB assumption
except Exception as e:
logger.warning(f"Failed to get size for image {image_path}: {e}")
# Assume a reasonable size for problematic files
total_size_mb += 1.0 # 1MB assumption
# Apply 40MB cap for custom models if needed
effective_limit_mb = max_size_mb
try:
from providers.base import ProviderType
# ModelCapabilities dataclass has provider field defined
if capabilities.provider == ProviderType.CUSTOM:
effective_limit_mb = min(max_size_mb, 40.0)
except Exception:
pass
# Validate against size limit
if total_size_mb > effective_limit_mb:
return {
"status": "error",
"content": (
f"Image size limit exceeded: Model '{model_name}' supports maximum {effective_limit_mb:.1f}MB "
f"for all images combined, but {total_size_mb:.1f}MB was provided. "
f"Please reduce image sizes or count and try again."
),
"content_type": "text",
"metadata": {
"error_type": "validation_error",
"model_name": model_name,
"total_size_mb": round(total_size_mb, 2),
"limit_mb": round(effective_limit_mb, 2),
"image_count": len(images),
"supports_images": True,
},
}
# All validations passed
logger.debug(f"Image validation passed: {len(images)} images, {total_size_mb:.1f}MB total")
return None
def _parse_response(self, raw_text: str, request, model_info: Optional[dict] = None):
"""Parse response - will be inherited for now."""
# Implementation inherited from current base.py