Add DocGen tool with comprehensive documentation generation capabilities (#109)
* WIP: new workflow architecture * WIP: further improvements and cleanup * WIP: cleanup and docks, replace old tool with new * WIP: cleanup and docks, replace old tool with new * WIP: new planner implementation using workflow * WIP: precommit tool working as a workflow instead of a basic tool Support for passing False to use_assistant_model to skip external models completely and use Claude only * WIP: precommit workflow version swapped with old * WIP: codereview * WIP: replaced codereview * WIP: replaced codereview * WIP: replaced refactor * WIP: workflow for thinkdeep * WIP: ensure files get embedded correctly * WIP: thinkdeep replaced with workflow version * WIP: improved messaging when an external model's response is received * WIP: analyze tool swapped * WIP: updated tests * Extract only the content when building history * Use "relevant_files" for workflow tools only * WIP: updated tests * Extract only the content when building history * Use "relevant_files" for workflow tools only * WIP: fixed get_completion_next_steps_message missing param * Fixed tests Request for files consistently * Fixed tests Request for files consistently * Fixed tests * New testgen workflow tool Updated docs * Swap testgen workflow * Fix CI test failures by excluding API-dependent tests - Update GitHub Actions workflow to exclude simulation tests that require API keys - Fix collaboration tests to properly mock workflow tool expert analysis calls - Update test assertions to handle new workflow tool response format - Ensure unit tests run without external API dependencies in CI 🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com> * WIP - Update tests to match new tools * WIP - Update tests to match new tools * WIP - Update tests to match new tools * Should help with https://github.com/BeehiveInnovations/zen-mcp-server/issues/97 Clear python cache when running script: https://github.com/BeehiveInnovations/zen-mcp-server/issues/96 Improved retry error logging Cleanup * WIP - chat tool using new architecture and improved code sharing * Removed todo * Removed todo * Cleanup old name * Tweak wordings * Tweak wordings Migrate old tests * Support for Flash 2.0 and Flash Lite 2.0 * Support for Flash 2.0 and Flash Lite 2.0 * Support for Flash 2.0 and Flash Lite 2.0 Fixed test * Improved consensus to use the workflow base class * Improved consensus to use the workflow base class * Allow images * Allow images * Replaced old consensus tool * Cleanup tests * Tests for prompt size * New tool: docgen Tests for prompt size Fixes: https://github.com/BeehiveInnovations/zen-mcp-server/issues/107 Use available token size limits: https://github.com/BeehiveInnovations/zen-mcp-server/issues/105 * Improved docgen prompt Exclude TestGen from pytest inclusion * Updated errors * Lint * DocGen instructed not to fix bugs, surface them and stick to d * WIP * Stop claude from being lazy and only documenting a small handful * More style rules --------- Co-authored-by: Claude <noreply@anthropic.com>
This commit is contained in:
committed by
GitHub
parent
0655590a51
commit
c960bcb720
@@ -7,6 +7,7 @@ from .chat import ChatTool
|
||||
from .codereview import CodeReviewTool
|
||||
from .consensus import ConsensusTool
|
||||
from .debug import DebugIssueTool
|
||||
from .docgen import DocgenTool
|
||||
from .listmodels import ListModelsTool
|
||||
from .planner import PlannerTool
|
||||
from .precommit import PrecommitTool
|
||||
@@ -14,11 +15,13 @@ from .refactor import RefactorTool
|
||||
from .testgen import TestGenTool
|
||||
from .thinkdeep import ThinkDeepTool
|
||||
from .tracer import TracerTool
|
||||
from .version import VersionTool
|
||||
|
||||
__all__ = [
|
||||
"ThinkDeepTool",
|
||||
"CodeReviewTool",
|
||||
"DebugIssueTool",
|
||||
"DocgenTool",
|
||||
"AnalyzeTool",
|
||||
"ChatTool",
|
||||
"ConsensusTool",
|
||||
@@ -28,4 +31,5 @@ __all__ = [
|
||||
"RefactorTool",
|
||||
"TestGenTool",
|
||||
"TracerTool",
|
||||
"VersionTool",
|
||||
]
|
||||
|
||||
2224
tools/base.py
2224
tools/base.py
File diff suppressed because it is too large
Load Diff
158
tools/chat.py
158
tools/chat.py
@@ -1,5 +1,9 @@
|
||||
"""
|
||||
Chat tool - General development chat and collaborative thinking
|
||||
|
||||
This tool provides a conversational interface for general development assistance,
|
||||
brainstorming, problem-solving, and collaborative thinking. It supports file context,
|
||||
images, and conversation continuation for seamless multi-turn interactions.
|
||||
"""
|
||||
|
||||
from typing import TYPE_CHECKING, Any, Optional
|
||||
@@ -11,10 +15,11 @@ if TYPE_CHECKING:
|
||||
|
||||
from config import TEMPERATURE_BALANCED
|
||||
from systemprompts import CHAT_PROMPT
|
||||
from tools.shared.base_models import ToolRequest
|
||||
|
||||
from .base import BaseTool, ToolRequest
|
||||
from .simple.base import SimpleTool
|
||||
|
||||
# Field descriptions to avoid duplication between Pydantic and JSON schema
|
||||
# Field descriptions matching the original Chat tool exactly
|
||||
CHAT_FIELD_DESCRIPTIONS = {
|
||||
"prompt": (
|
||||
"You MUST provide a thorough, expressive question or share an idea with as much context as possible. "
|
||||
@@ -32,15 +37,23 @@ CHAT_FIELD_DESCRIPTIONS = {
|
||||
|
||||
|
||||
class ChatRequest(ToolRequest):
|
||||
"""Request model for chat tool"""
|
||||
"""Request model for Chat tool"""
|
||||
|
||||
prompt: str = Field(..., description=CHAT_FIELD_DESCRIPTIONS["prompt"])
|
||||
files: Optional[list[str]] = Field(default_factory=list, description=CHAT_FIELD_DESCRIPTIONS["files"])
|
||||
images: Optional[list[str]] = Field(default_factory=list, description=CHAT_FIELD_DESCRIPTIONS["images"])
|
||||
|
||||
|
||||
class ChatTool(BaseTool):
|
||||
"""General development chat and collaborative thinking tool"""
|
||||
class ChatTool(SimpleTool):
|
||||
"""
|
||||
General development chat and collaborative thinking tool using SimpleTool architecture.
|
||||
|
||||
This tool provides identical functionality to the original Chat tool but uses the new
|
||||
SimpleTool architecture for cleaner code organization and better maintainability.
|
||||
|
||||
Migration note: This tool is designed to be a drop-in replacement for the original
|
||||
Chat tool with 100% behavioral compatibility.
|
||||
"""
|
||||
|
||||
def get_name(self) -> str:
|
||||
return "chat"
|
||||
@@ -57,7 +70,33 @@ class ChatTool(BaseTool):
|
||||
"provide enhanced capabilities."
|
||||
)
|
||||
|
||||
def get_system_prompt(self) -> str:
|
||||
return CHAT_PROMPT
|
||||
|
||||
def get_default_temperature(self) -> float:
|
||||
return TEMPERATURE_BALANCED
|
||||
|
||||
def get_model_category(self) -> "ToolModelCategory":
|
||||
"""Chat prioritizes fast responses and cost efficiency"""
|
||||
from tools.models import ToolModelCategory
|
||||
|
||||
return ToolModelCategory.FAST_RESPONSE
|
||||
|
||||
def get_request_model(self):
|
||||
"""Return the Chat-specific request model"""
|
||||
return ChatRequest
|
||||
|
||||
# === Schema Generation ===
|
||||
# For maximum compatibility, we override get_input_schema() to match the original Chat tool exactly
|
||||
|
||||
def get_input_schema(self) -> dict[str, Any]:
|
||||
"""
|
||||
Generate input schema matching the original Chat tool exactly.
|
||||
|
||||
This maintains 100% compatibility with the original Chat tool by using
|
||||
the same schema generation approach while still benefiting from SimpleTool
|
||||
convenience methods.
|
||||
"""
|
||||
schema = {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
@@ -115,79 +154,62 @@ class ChatTool(BaseTool):
|
||||
|
||||
return schema
|
||||
|
||||
def get_system_prompt(self) -> str:
|
||||
return CHAT_PROMPT
|
||||
# === Tool-specific field definitions (alternative approach for reference) ===
|
||||
# These aren't used since we override get_input_schema(), but they show how
|
||||
# the tool could be implemented using the automatic SimpleTool schema building
|
||||
|
||||
def get_default_temperature(self) -> float:
|
||||
return TEMPERATURE_BALANCED
|
||||
def get_tool_fields(self) -> dict[str, dict[str, Any]]:
|
||||
"""
|
||||
Tool-specific field definitions for ChatSimple.
|
||||
|
||||
def get_model_category(self) -> "ToolModelCategory":
|
||||
"""Chat prioritizes fast responses and cost efficiency"""
|
||||
from tools.models import ToolModelCategory
|
||||
Note: This method isn't used since we override get_input_schema() for
|
||||
exact compatibility, but it demonstrates how ChatSimple could be
|
||||
implemented using automatic schema building.
|
||||
"""
|
||||
return {
|
||||
"prompt": {
|
||||
"type": "string",
|
||||
"description": CHAT_FIELD_DESCRIPTIONS["prompt"],
|
||||
},
|
||||
"files": {
|
||||
"type": "array",
|
||||
"items": {"type": "string"},
|
||||
"description": CHAT_FIELD_DESCRIPTIONS["files"],
|
||||
},
|
||||
"images": {
|
||||
"type": "array",
|
||||
"items": {"type": "string"},
|
||||
"description": CHAT_FIELD_DESCRIPTIONS["images"],
|
||||
},
|
||||
}
|
||||
|
||||
return ToolModelCategory.FAST_RESPONSE
|
||||
def get_required_fields(self) -> list[str]:
|
||||
"""Required fields for ChatSimple tool"""
|
||||
return ["prompt"]
|
||||
|
||||
def get_request_model(self):
|
||||
return ChatRequest
|
||||
# === Hook Method Implementations ===
|
||||
|
||||
async def prepare_prompt(self, request: ChatRequest) -> str:
|
||||
"""Prepare the chat prompt with optional context files"""
|
||||
# Check for prompt.txt in files
|
||||
prompt_content, updated_files = self.handle_prompt_file(request.files)
|
||||
"""
|
||||
Prepare the chat prompt with optional context files.
|
||||
|
||||
# Use prompt.txt content if available, otherwise use the prompt field
|
||||
user_content = prompt_content if prompt_content else request.prompt
|
||||
|
||||
# Check user input size at MCP transport boundary (before adding internal content)
|
||||
size_check = self.check_prompt_size(user_content)
|
||||
if size_check:
|
||||
# Need to return error, but prepare_prompt returns str
|
||||
# Use exception to handle this cleanly
|
||||
|
||||
from tools.models import ToolOutput
|
||||
|
||||
raise ValueError(f"MCP_SIZE_CHECK:{ToolOutput(**size_check).model_dump_json()}")
|
||||
|
||||
# Update request files list
|
||||
if updated_files is not None:
|
||||
request.files = updated_files
|
||||
|
||||
# Add context files if provided (using centralized file handling with filtering)
|
||||
if request.files:
|
||||
file_content, processed_files = self._prepare_file_content_for_prompt(
|
||||
request.files, request.continuation_id, "Context files"
|
||||
)
|
||||
self._actually_processed_files = processed_files
|
||||
if file_content:
|
||||
user_content = f"{user_content}\n\n=== CONTEXT FILES ===\n{file_content}\n=== END CONTEXT ===="
|
||||
|
||||
# Check token limits
|
||||
self._validate_token_limit(user_content, "Content")
|
||||
|
||||
# Add web search instruction if enabled
|
||||
websearch_instruction = self.get_websearch_instruction(
|
||||
request.use_websearch,
|
||||
"""When discussing topics, consider if searches for these would help:
|
||||
- Documentation for any technologies or concepts mentioned
|
||||
- Current best practices and patterns
|
||||
- Recent developments or updates
|
||||
- Community discussions and solutions""",
|
||||
)
|
||||
|
||||
# Combine system prompt with user content
|
||||
full_prompt = f"""{self.get_system_prompt()}{websearch_instruction}
|
||||
|
||||
=== USER REQUEST ===
|
||||
{user_content}
|
||||
=== END REQUEST ===
|
||||
|
||||
Please provide a thoughtful, comprehensive response:"""
|
||||
|
||||
return full_prompt
|
||||
This implementation matches the original Chat tool exactly while using
|
||||
SimpleTool convenience methods for cleaner code.
|
||||
"""
|
||||
# Use SimpleTool's Chat-style prompt preparation
|
||||
return self.prepare_chat_style_prompt(request)
|
||||
|
||||
def format_response(self, response: str, request: ChatRequest, model_info: Optional[dict] = None) -> str:
|
||||
"""Format the chat response"""
|
||||
"""
|
||||
Format the chat response to match the original Chat tool exactly.
|
||||
"""
|
||||
return (
|
||||
f"{response}\n\n---\n\n**Claude's Turn:** Evaluate this perspective alongside your analysis to "
|
||||
"form a comprehensive solution and continue with the user's request and task at hand."
|
||||
)
|
||||
|
||||
def get_websearch_guidance(self) -> str:
|
||||
"""
|
||||
Return Chat tool-style web search guidance.
|
||||
"""
|
||||
return self.get_chat_style_websearch_guidance()
|
||||
|
||||
1146
tools/consensus.py
1146
tools/consensus.py
File diff suppressed because it is too large
Load Diff
646
tools/docgen.py
Normal file
646
tools/docgen.py
Normal file
@@ -0,0 +1,646 @@
|
||||
"""
|
||||
Documentation Generation tool - Automated code documentation with complexity analysis
|
||||
|
||||
This tool provides a structured workflow for adding comprehensive documentation to codebases.
|
||||
It guides you through systematic code analysis to generate modern documentation with:
|
||||
- Function/method parameter documentation
|
||||
- Big O complexity analysis
|
||||
- Call flow and dependency documentation
|
||||
- Inline comments for complex logic
|
||||
- Smart updating of existing documentation
|
||||
|
||||
Key features:
|
||||
- Step-by-step documentation workflow with progress tracking
|
||||
- Context-aware file embedding (references during analysis, full content for documentation)
|
||||
- Automatic conversation threading and history preservation
|
||||
- Expert analysis integration with external models
|
||||
- Support for multiple programming languages and documentation styles
|
||||
- Configurable documentation features via parameters
|
||||
"""
|
||||
|
||||
import logging
|
||||
from typing import TYPE_CHECKING, Any, Optional
|
||||
|
||||
from pydantic import Field
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from tools.models import ToolModelCategory
|
||||
|
||||
from config import TEMPERATURE_ANALYTICAL
|
||||
from systemprompts import DOCGEN_PROMPT
|
||||
from tools.shared.base_models import WorkflowRequest
|
||||
|
||||
from .workflow.base import WorkflowTool
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Tool-specific field descriptions for documentation generation
|
||||
DOCGEN_FIELD_DESCRIPTIONS = {
|
||||
"step": (
|
||||
"For step 1: DISCOVERY PHASE ONLY - describe your plan to discover ALL files that need documentation in the current directory. "
|
||||
"DO NOT document anything yet. Count all files, list them clearly, report the total count, then IMMEDIATELY proceed to step 2. "
|
||||
"For step 2 and beyond: DOCUMENTATION PHASE - describe what you're currently documenting, focusing on ONE FILE at a time "
|
||||
"to ensure complete coverage of all functions and methods within that file. CRITICAL: DO NOT ALTER ANY CODE LOGIC - "
|
||||
"only add documentation (docstrings, comments). ALWAYS use MODERN documentation style for the programming language "
|
||||
'(e.g., /// for Objective-C, /** */ for Java/JavaScript, """ for Python, // for Swift/C++, etc. - NEVER use legacy styles). '
|
||||
"Consider complexity analysis, call flow information, and parameter descriptions. "
|
||||
"If you find bugs or logic issues, TRACK THEM but DO NOT FIX THEM - report after documentation is complete. "
|
||||
"Report progress using num_files_documented out of total_files_to_document counters."
|
||||
),
|
||||
"step_number": (
|
||||
"The index of the current step in the documentation generation sequence, beginning at 1. Each step should build upon or "
|
||||
"revise the previous one."
|
||||
),
|
||||
"total_steps": (
|
||||
"Total steps needed to complete documentation: 1 (discovery) + number of files to document. "
|
||||
"This is calculated dynamically based on total_files_to_document counter."
|
||||
),
|
||||
"next_step_required": (
|
||||
"Set to true if you plan to continue the documentation analysis with another step. False means you believe the "
|
||||
"documentation plan is complete and ready for implementation."
|
||||
),
|
||||
"findings": (
|
||||
"Summarize everything discovered in this step about the code and its documentation needs. Include analysis of missing "
|
||||
"documentation, complexity assessments, call flow understanding, and opportunities for improvement. Be specific and "
|
||||
"avoid vague language—document what you now know about the code structure and how it affects your documentation plan. "
|
||||
"IMPORTANT: Document both well-documented areas (good examples to follow) and areas needing documentation. "
|
||||
"ALWAYS use MODERN documentation style appropriate for the programming language (/// for Objective-C, /** */ for Java/JavaScript, "
|
||||
'""" for Python, // for Swift/C++, etc. - NEVER use legacy /* */ style for languages that have modern alternatives). '
|
||||
"If you discover any glaring, super-critical bugs that could cause serious harm or data corruption, IMMEDIATELY STOP "
|
||||
"the documentation workflow and ask the user directly if this critical bug should be addressed first before continuing. "
|
||||
"For any other non-critical bugs, flaws, or potential improvements, note them here so they can be surfaced later for review. "
|
||||
"In later steps, confirm or update past findings with additional evidence."
|
||||
),
|
||||
"relevant_files": (
|
||||
"Current focus files (as full absolute paths) for this step. In each step, focus on documenting "
|
||||
"ONE FILE COMPLETELY before moving to the next. This should contain only the file(s) being "
|
||||
"actively documented in the current step, not all files that might need documentation."
|
||||
),
|
||||
"relevant_context": (
|
||||
"List methods, functions, or classes that need documentation, in the format "
|
||||
"'ClassName.methodName' or 'functionName'. "
|
||||
"Prioritize those with complex logic, important interfaces, or missing/inadequate documentation."
|
||||
),
|
||||
"num_files_documented": (
|
||||
"CRITICAL COUNTER: Number of files you have COMPLETELY documented so far. Start at 0. "
|
||||
"Increment by 1 only when a file is 100% documented (all functions/methods have documentation). "
|
||||
"This counter prevents premature completion - you CANNOT set next_step_required=false "
|
||||
"unless num_files_documented equals total_files_to_document."
|
||||
),
|
||||
"total_files_to_document": (
|
||||
"CRITICAL COUNTER: Total number of files discovered that need documentation in current directory. "
|
||||
"Set this in step 1 after discovering all files. This is the target number - when "
|
||||
"num_files_documented reaches this number, then and ONLY then can you set next_step_required=false. "
|
||||
"This prevents stopping after documenting just one file."
|
||||
),
|
||||
"document_complexity": (
|
||||
"Whether to include algorithmic complexity (Big O) analysis in function/method documentation. "
|
||||
"Default: true. When enabled, analyzes and documents the computational complexity of algorithms."
|
||||
),
|
||||
"document_flow": (
|
||||
"Whether to include call flow and dependency information in documentation. "
|
||||
"Default: true. When enabled, documents which methods this function calls and which methods call this function."
|
||||
),
|
||||
"update_existing": (
|
||||
"Whether to update existing documentation when it's found to be incorrect or incomplete. "
|
||||
"Default: true. When enabled, improves existing docs rather than just adding new ones."
|
||||
),
|
||||
"comments_on_complex_logic": (
|
||||
"Whether to add inline comments around complex logic within functions. "
|
||||
"Default: true. When enabled, adds explanatory comments for non-obvious algorithmic steps."
|
||||
),
|
||||
}
|
||||
|
||||
|
||||
class DocgenRequest(WorkflowRequest):
|
||||
"""Request model for documentation generation steps"""
|
||||
|
||||
# Required workflow fields
|
||||
step: str = Field(..., description=DOCGEN_FIELD_DESCRIPTIONS["step"])
|
||||
step_number: int = Field(..., description=DOCGEN_FIELD_DESCRIPTIONS["step_number"])
|
||||
total_steps: int = Field(..., description=DOCGEN_FIELD_DESCRIPTIONS["total_steps"])
|
||||
next_step_required: bool = Field(..., description=DOCGEN_FIELD_DESCRIPTIONS["next_step_required"])
|
||||
|
||||
# Documentation analysis tracking fields
|
||||
findings: str = Field(..., description=DOCGEN_FIELD_DESCRIPTIONS["findings"])
|
||||
relevant_files: list[str] = Field(default_factory=list, description=DOCGEN_FIELD_DESCRIPTIONS["relevant_files"])
|
||||
relevant_context: list[str] = Field(default_factory=list, description=DOCGEN_FIELD_DESCRIPTIONS["relevant_context"])
|
||||
|
||||
# Critical completion tracking counters
|
||||
num_files_documented: int = Field(0, description=DOCGEN_FIELD_DESCRIPTIONS["num_files_documented"])
|
||||
total_files_to_document: int = Field(0, description=DOCGEN_FIELD_DESCRIPTIONS["total_files_to_document"])
|
||||
|
||||
# Documentation generation configuration parameters
|
||||
document_complexity: Optional[bool] = Field(True, description=DOCGEN_FIELD_DESCRIPTIONS["document_complexity"])
|
||||
document_flow: Optional[bool] = Field(True, description=DOCGEN_FIELD_DESCRIPTIONS["document_flow"])
|
||||
update_existing: Optional[bool] = Field(True, description=DOCGEN_FIELD_DESCRIPTIONS["update_existing"])
|
||||
comments_on_complex_logic: Optional[bool] = Field(
|
||||
True, description=DOCGEN_FIELD_DESCRIPTIONS["comments_on_complex_logic"]
|
||||
)
|
||||
|
||||
|
||||
class DocgenTool(WorkflowTool):
|
||||
"""
|
||||
Documentation generation tool for automated code documentation with complexity analysis.
|
||||
|
||||
This tool implements a structured documentation workflow that guides users through
|
||||
methodical code analysis to generate comprehensive documentation including:
|
||||
- Function/method signatures and parameter descriptions
|
||||
- Algorithmic complexity (Big O) analysis
|
||||
- Call flow and dependency documentation
|
||||
- Inline comments for complex logic
|
||||
- Modern documentation style appropriate for the language/platform
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.initial_request = None
|
||||
|
||||
def get_name(self) -> str:
|
||||
return "docgen"
|
||||
|
||||
def get_description(self) -> str:
|
||||
return (
|
||||
"COMPREHENSIVE DOCUMENTATION GENERATION - Step-by-step code documentation with expert analysis. "
|
||||
"This tool guides you through a systematic investigation process where you:\n\n"
|
||||
"1. Start with step 1: describe your documentation investigation plan\n"
|
||||
"2. STOP and investigate code structure, patterns, and documentation needs\n"
|
||||
"3. Report findings in step 2 with concrete evidence from actual code analysis\n"
|
||||
"4. Continue investigating between each step\n"
|
||||
"5. Track findings, relevant files, and documentation opportunities throughout\n"
|
||||
"6. Update assessments as understanding evolves\n"
|
||||
"7. Once investigation is complete, receive expert analysis\n\n"
|
||||
"IMPORTANT: This tool enforces investigation between steps:\n"
|
||||
"- After each call, you MUST investigate before calling again\n"
|
||||
"- Each step must include NEW evidence from code examination\n"
|
||||
"- No recursive calls without actual investigation work\n"
|
||||
"- The tool will specify which step number to use next\n"
|
||||
"- Follow the required_actions list for investigation guidance\n\n"
|
||||
"Perfect for: comprehensive documentation generation, code documentation analysis, "
|
||||
"complexity assessment, documentation modernization, API documentation."
|
||||
)
|
||||
|
||||
def get_system_prompt(self) -> str:
|
||||
return DOCGEN_PROMPT
|
||||
|
||||
def get_default_temperature(self) -> float:
|
||||
return TEMPERATURE_ANALYTICAL
|
||||
|
||||
def get_model_category(self) -> "ToolModelCategory":
|
||||
"""Docgen requires analytical and reasoning capabilities"""
|
||||
from tools.models import ToolModelCategory
|
||||
|
||||
return ToolModelCategory.EXTENDED_REASONING
|
||||
|
||||
def requires_model(self) -> bool:
|
||||
"""
|
||||
Docgen tool doesn't require model resolution at the MCP boundary.
|
||||
|
||||
The docgen tool is a self-contained workflow tool that guides Claude through
|
||||
systematic documentation generation without calling external AI models.
|
||||
|
||||
Returns:
|
||||
bool: False - docgen doesn't need external AI model access
|
||||
"""
|
||||
return False
|
||||
|
||||
def requires_expert_analysis(self) -> bool:
|
||||
"""Docgen is self-contained and doesn't need expert analysis."""
|
||||
return False
|
||||
|
||||
def get_workflow_request_model(self):
|
||||
"""Return the docgen-specific request model."""
|
||||
return DocgenRequest
|
||||
|
||||
def get_tool_fields(self) -> dict[str, dict[str, Any]]:
|
||||
"""Return the tool-specific fields for docgen."""
|
||||
return {
|
||||
"document_complexity": {
|
||||
"type": "boolean",
|
||||
"default": True,
|
||||
"description": DOCGEN_FIELD_DESCRIPTIONS["document_complexity"],
|
||||
},
|
||||
"document_flow": {
|
||||
"type": "boolean",
|
||||
"default": True,
|
||||
"description": DOCGEN_FIELD_DESCRIPTIONS["document_flow"],
|
||||
},
|
||||
"update_existing": {
|
||||
"type": "boolean",
|
||||
"default": True,
|
||||
"description": DOCGEN_FIELD_DESCRIPTIONS["update_existing"],
|
||||
},
|
||||
"comments_on_complex_logic": {
|
||||
"type": "boolean",
|
||||
"default": True,
|
||||
"description": DOCGEN_FIELD_DESCRIPTIONS["comments_on_complex_logic"],
|
||||
},
|
||||
"num_files_documented": {
|
||||
"type": "integer",
|
||||
"default": 0,
|
||||
"minimum": 0,
|
||||
"description": DOCGEN_FIELD_DESCRIPTIONS["num_files_documented"],
|
||||
},
|
||||
"total_files_to_document": {
|
||||
"type": "integer",
|
||||
"default": 0,
|
||||
"minimum": 0,
|
||||
"description": DOCGEN_FIELD_DESCRIPTIONS["total_files_to_document"],
|
||||
},
|
||||
}
|
||||
|
||||
def get_required_fields(self) -> list[str]:
|
||||
"""Return additional required fields beyond the standard workflow requirements."""
|
||||
return [
|
||||
"document_complexity",
|
||||
"document_flow",
|
||||
"update_existing",
|
||||
"comments_on_complex_logic",
|
||||
"num_files_documented",
|
||||
"total_files_to_document",
|
||||
]
|
||||
|
||||
def get_input_schema(self) -> dict[str, Any]:
|
||||
"""Generate input schema using WorkflowSchemaBuilder with field exclusions."""
|
||||
from .workflow.schema_builders import WorkflowSchemaBuilder
|
||||
|
||||
# Exclude workflow fields that documentation generation doesn't need
|
||||
excluded_workflow_fields = [
|
||||
"confidence", # Documentation doesn't use confidence levels
|
||||
"hypothesis", # Documentation doesn't use hypothesis
|
||||
"backtrack_from_step", # Documentation uses simpler error recovery
|
||||
"files_checked", # Documentation uses doc_files and doc_methods instead for better tracking
|
||||
]
|
||||
|
||||
# Exclude common fields that documentation generation doesn't need
|
||||
excluded_common_fields = [
|
||||
"model", # Documentation doesn't need external model selection
|
||||
"temperature", # Documentation doesn't need temperature control
|
||||
"thinking_mode", # Documentation doesn't need thinking mode
|
||||
"use_websearch", # Documentation doesn't need web search
|
||||
"images", # Documentation doesn't use images
|
||||
]
|
||||
|
||||
return WorkflowSchemaBuilder.build_schema(
|
||||
tool_specific_fields=self.get_tool_fields(),
|
||||
required_fields=self.get_required_fields(), # Include docgen-specific required fields
|
||||
model_field_schema=None, # Exclude model field - docgen doesn't need external model selection
|
||||
auto_mode=False, # Force non-auto mode to prevent model field addition
|
||||
tool_name=self.get_name(),
|
||||
excluded_workflow_fields=excluded_workflow_fields,
|
||||
excluded_common_fields=excluded_common_fields,
|
||||
)
|
||||
|
||||
def get_required_actions(self, step_number: int, confidence: str, findings: str, total_steps: int) -> list[str]:
|
||||
"""Define required actions for comprehensive documentation analysis with step-by-step file focus."""
|
||||
if step_number == 1:
|
||||
# Initial discovery ONLY - no documentation yet
|
||||
return [
|
||||
"CRITICAL: DO NOT ALTER ANY CODE LOGIC! Only add documentation (docstrings, comments)",
|
||||
"Discover ALL files in the current directory (not nested) that need documentation",
|
||||
"COUNT the exact number of files that need documentation",
|
||||
"LIST all the files you found that need documentation by name",
|
||||
"IDENTIFY the programming language(s) to use MODERN documentation style (/// for Objective-C, /** */ for Java/JavaScript, etc.)",
|
||||
"DO NOT start documenting any files yet - this is discovery phase only",
|
||||
"Report the total count and file list clearly to the user",
|
||||
"IMMEDIATELY call docgen step 2 after discovery to begin documentation phase",
|
||||
"WHEN CALLING DOCGEN step 2: Set total_files_to_document to the exact count you found",
|
||||
"WHEN CALLING DOCGEN step 2: Set num_files_documented to 0 (haven't started yet)",
|
||||
]
|
||||
elif step_number == 2:
|
||||
# Start documentation phase with first file
|
||||
return [
|
||||
"CRITICAL: DO NOT ALTER ANY CODE LOGIC! Only add documentation (docstrings, comments)",
|
||||
"Choose the FIRST file from your discovered list to start documentation",
|
||||
"For the chosen file: identify ALL functions, classes, and methods within it",
|
||||
'USE MODERN documentation style for the programming language (/// for Objective-C, /** */ for Java/JavaScript, """ for Python, etc.)',
|
||||
"Document ALL functions/methods in the chosen file - don't skip any - DOCUMENTATION ONLY",
|
||||
"When file is 100% documented, increment num_files_documented from 0 to 1",
|
||||
"Note any dependencies this file has (what it imports/calls) and what calls into it",
|
||||
"Track any logic bugs/issues found but DO NOT FIX THEM - report after documentation complete",
|
||||
"Report which specific functions you documented in this step for accountability",
|
||||
"Report progress: num_files_documented (1) out of total_files_to_document",
|
||||
]
|
||||
elif step_number <= 4:
|
||||
# Continue with focused file-by-file approach
|
||||
return [
|
||||
"CRITICAL: DO NOT ALTER ANY CODE LOGIC! Only add documentation (docstrings, comments)",
|
||||
"Choose the NEXT undocumented file from your discovered list",
|
||||
"For the chosen file: identify ALL functions, classes, and methods within it",
|
||||
"USE MODERN documentation style for the programming language (NEVER use legacy /* */ style for languages with modern alternatives)",
|
||||
"Document ALL functions/methods in the chosen file - don't skip any - DOCUMENTATION ONLY",
|
||||
"When file is 100% documented, increment num_files_documented by 1",
|
||||
"Verify that EVERY function in the current file has proper documentation (no skipping)",
|
||||
"Track any bugs/issues found but DO NOT FIX THEM - document first, report issues later",
|
||||
"Report specific function names you documented for verification",
|
||||
"Report progress: current num_files_documented out of total_files_to_document",
|
||||
]
|
||||
else:
|
||||
# Continue systematic file-by-file coverage
|
||||
return [
|
||||
"CRITICAL: DO NOT ALTER ANY CODE LOGIC! Only add documentation (docstrings, comments)",
|
||||
"Check counters: num_files_documented vs total_files_to_document",
|
||||
"If num_files_documented < total_files_to_document: choose NEXT undocumented file",
|
||||
"USE MODERN documentation style appropriate for each programming language (NEVER legacy styles)",
|
||||
"Document every function, method, and class in current file with no exceptions",
|
||||
"When file is 100% documented, increment num_files_documented by 1",
|
||||
"Track bugs/issues found but DO NOT FIX THEM - focus on documentation only",
|
||||
"Report progress: current num_files_documented out of total_files_to_document",
|
||||
"If num_files_documented < total_files_to_document: RESTART docgen with next step",
|
||||
"ONLY set next_step_required=false when num_files_documented equals total_files_to_document",
|
||||
"For nested dependencies: check if functions call into subdirectories and document those too",
|
||||
"Report any accumulated bugs/issues found during documentation for user decision",
|
||||
]
|
||||
|
||||
def should_call_expert_analysis(self, consolidated_findings, request=None) -> bool:
|
||||
"""Docgen is self-contained and doesn't need expert analysis."""
|
||||
return False
|
||||
|
||||
def prepare_expert_analysis_context(self, consolidated_findings) -> str:
|
||||
"""Docgen doesn't use expert analysis."""
|
||||
return ""
|
||||
|
||||
def get_step_guidance(self, step_number: int, confidence: str, request) -> dict[str, Any]:
|
||||
"""
|
||||
Provide step-specific guidance for documentation generation workflow.
|
||||
|
||||
This method generates docgen-specific guidance used by get_step_guidance_message().
|
||||
"""
|
||||
# Generate the next steps instruction based on required actions
|
||||
# Calculate dynamic total_steps based on files to document
|
||||
total_files_to_document = self.get_request_total_files_to_document(request)
|
||||
calculated_total_steps = 1 + total_files_to_document if total_files_to_document > 0 else request.total_steps
|
||||
|
||||
required_actions = self.get_required_actions(step_number, confidence, request.findings, calculated_total_steps)
|
||||
|
||||
if step_number == 1:
|
||||
next_steps = (
|
||||
f"DISCOVERY PHASE ONLY - DO NOT START DOCUMENTING YET!\n"
|
||||
f"MANDATORY: DO NOT call the {self.get_name()} tool again immediately. You MUST first perform "
|
||||
f"FILE DISCOVERY step by step. DO NOT DOCUMENT ANYTHING YET. "
|
||||
f"MANDATORY ACTIONS before calling {self.get_name()} step {step_number + 1}:\n"
|
||||
+ "\n".join(f"{i+1}. {action}" for i, action in enumerate(required_actions))
|
||||
+ f"\n\nCRITICAL: When you call {self.get_name()} step 2, set total_files_to_document to the exact count "
|
||||
f"of files needing documentation and set num_files_documented to 0 (haven't started documenting yet). "
|
||||
f"Your total_steps will be automatically calculated as 1 (discovery) + number of files to document. "
|
||||
f"Step 2 will BEGIN the documentation phase. Report the count clearly and then IMMEDIATELY "
|
||||
f"proceed to call {self.get_name()} step 2 to start documenting the first file."
|
||||
)
|
||||
elif step_number == 2:
|
||||
next_steps = (
|
||||
f"DOCUMENTATION PHASE BEGINS! ABSOLUTE RULE: DO NOT ALTER ANY CODE LOGIC! DOCUMENTATION ONLY!\n"
|
||||
f"START FILE-BY-FILE APPROACH! Focus on ONE file until 100% complete. "
|
||||
f"MANDATORY ACTIONS before calling {self.get_name()} step {step_number + 1}:\n"
|
||||
+ "\n".join(f"{i+1}. {action}" for i, action in enumerate(required_actions))
|
||||
+ f"\n\nREPORT your progress: which specific functions did you document? Update num_files_documented from 0 to 1 when first file complete. "
|
||||
f"REPORT counters: current num_files_documented out of total_files_to_document. "
|
||||
f"If you found bugs/issues, LIST THEM but DO NOT FIX THEM - ask user what to do after documentation. "
|
||||
f"Do NOT move to a new file until the current one is completely documented. "
|
||||
f"When ready for step {step_number + 1}, report completed work with updated counters."
|
||||
)
|
||||
elif step_number <= 4:
|
||||
next_steps = (
|
||||
f"ABSOLUTE RULE: DO NOT ALTER ANY CODE LOGIC! DOCUMENTATION ONLY!\n"
|
||||
f"CONTINUE FILE-BY-FILE APPROACH! Focus on ONE file until 100% complete. "
|
||||
f"MANDATORY ACTIONS before calling {self.get_name()} step {step_number + 1}:\n"
|
||||
+ "\n".join(f"{i+1}. {action}" for i, action in enumerate(required_actions))
|
||||
+ f"\n\nREPORT your progress: which specific functions did you document? Update num_files_documented when file complete. "
|
||||
f"REPORT counters: current num_files_documented out of total_files_to_document. "
|
||||
f"If you found bugs/issues, LIST THEM but DO NOT FIX THEM - ask user what to do after documentation. "
|
||||
f"Do NOT move to a new file until the current one is completely documented. "
|
||||
f"When ready for step {step_number + 1}, report completed work with updated counters."
|
||||
)
|
||||
else:
|
||||
next_steps = (
|
||||
f"ABSOLUTE RULE: DO NOT ALTER ANY CODE LOGIC! DOCUMENTATION ONLY!\n"
|
||||
f"CRITICAL: Check if MORE FILES need documentation before finishing! "
|
||||
f"REQUIRED ACTIONS before calling {self.get_name()} step {step_number + 1}:\n"
|
||||
+ "\n".join(f"{i+1}. {action}" for i, action in enumerate(required_actions))
|
||||
+ f"\n\nREPORT which functions you documented and update num_files_documented when file complete. "
|
||||
f"CHECK: If num_files_documented < total_files_to_document, RESTART {self.get_name()} with next step! "
|
||||
f"CRITICAL: Only set next_step_required=false when num_files_documented equals total_files_to_document! "
|
||||
f"REPORT counters: current num_files_documented out of total_files_to_document. "
|
||||
f"If you accumulated bugs/issues during documentation, REPORT THEM and ask user for guidance. "
|
||||
f"NO recursive {self.get_name()} calls without actual documentation work!"
|
||||
)
|
||||
|
||||
return {"next_steps": next_steps}
|
||||
|
||||
# Hook method overrides for docgen-specific behavior
|
||||
|
||||
async def handle_work_completion(self, response_data: dict, request, arguments: dict) -> dict:
|
||||
"""
|
||||
Override work completion to enforce counter validation.
|
||||
|
||||
The docgen tool MUST complete ALL files before finishing. If counters don't match,
|
||||
force continuation regardless of next_step_required setting.
|
||||
"""
|
||||
# CRITICAL VALIDATION: Check if all files have been documented using proper inheritance hooks
|
||||
num_files_documented = self.get_request_num_files_documented(request)
|
||||
total_files_to_document = self.get_request_total_files_to_document(request)
|
||||
|
||||
if num_files_documented < total_files_to_document:
|
||||
# Counters don't match - force continuation!
|
||||
logger.warning(
|
||||
f"Docgen stopping early: {num_files_documented} < {total_files_to_document}. "
|
||||
f"Forcing continuation to document remaining files."
|
||||
)
|
||||
|
||||
# Override to continuation mode
|
||||
response_data["status"] = "documentation_analysis_required"
|
||||
response_data[f"pause_for_{self.get_name()}"] = True
|
||||
response_data["next_steps"] = (
|
||||
f"CRITICAL ERROR: You attempted to finish documentation with only {num_files_documented} "
|
||||
f"out of {total_files_to_document} files documented! You MUST continue documenting "
|
||||
f"the remaining {total_files_to_document - num_files_documented} files. "
|
||||
f"Call {self.get_name()} again with step {request.step_number + 1} and continue documentation "
|
||||
f"of the next undocumented file. DO NOT set next_step_required=false until ALL files are documented!"
|
||||
)
|
||||
return response_data
|
||||
|
||||
# If counters match, proceed with normal completion
|
||||
return await super().handle_work_completion(response_data, request, arguments)
|
||||
|
||||
def prepare_step_data(self, request) -> dict:
|
||||
"""
|
||||
Prepare docgen-specific step data for processing.
|
||||
|
||||
Calculates total_steps dynamically based on number of files to document:
|
||||
- Step 1: Discovery phase
|
||||
- Steps 2+: One step per file to document
|
||||
"""
|
||||
# Calculate dynamic total_steps based on files to document
|
||||
total_files_to_document = self.get_request_total_files_to_document(request)
|
||||
if total_files_to_document > 0:
|
||||
# Discovery step (1) + one step per file
|
||||
calculated_total_steps = 1 + total_files_to_document
|
||||
else:
|
||||
# Fallback to request total_steps if no file count available
|
||||
calculated_total_steps = request.total_steps
|
||||
|
||||
step_data = {
|
||||
"step": request.step,
|
||||
"step_number": request.step_number,
|
||||
"total_steps": calculated_total_steps, # Use calculated value
|
||||
"findings": request.findings,
|
||||
"relevant_files": request.relevant_files,
|
||||
"relevant_context": request.relevant_context,
|
||||
"num_files_documented": request.num_files_documented,
|
||||
"total_files_to_document": request.total_files_to_document,
|
||||
"issues_found": [], # Docgen uses this for documentation gaps
|
||||
"confidence": "medium", # Default confidence for docgen
|
||||
"hypothesis": "systematic_documentation_needed", # Default hypothesis
|
||||
"images": [], # Docgen doesn't typically use images
|
||||
# CRITICAL: Include documentation configuration parameters so the model can see them
|
||||
"document_complexity": request.document_complexity,
|
||||
"document_flow": request.document_flow,
|
||||
"update_existing": request.update_existing,
|
||||
"comments_on_complex_logic": request.comments_on_complex_logic,
|
||||
}
|
||||
return step_data
|
||||
|
||||
def should_skip_expert_analysis(self, request, consolidated_findings) -> bool:
|
||||
"""
|
||||
Docgen tool skips expert analysis when Claude has "certain" confidence.
|
||||
"""
|
||||
return request.confidence == "certain" and not request.next_step_required
|
||||
|
||||
# Override inheritance hooks for docgen-specific behavior
|
||||
|
||||
def get_completion_status(self) -> str:
|
||||
"""Docgen tools use docgen-specific status."""
|
||||
return "documentation_analysis_complete"
|
||||
|
||||
def get_completion_data_key(self) -> str:
|
||||
"""Docgen uses 'complete_documentation_analysis' key."""
|
||||
return "complete_documentation_analysis"
|
||||
|
||||
def get_final_analysis_from_request(self, request):
|
||||
"""Docgen tools use 'hypothesis' field for documentation strategy."""
|
||||
return request.hypothesis
|
||||
|
||||
def get_confidence_level(self, request) -> str:
|
||||
"""Docgen tools use 'certain' for high confidence."""
|
||||
return request.confidence or "high"
|
||||
|
||||
def get_completion_message(self) -> str:
|
||||
"""Docgen-specific completion message."""
|
||||
return (
|
||||
"Documentation analysis complete with high confidence. You have identified the comprehensive "
|
||||
"documentation needs and strategy. MANDATORY: Present the user with the documentation plan "
|
||||
"and IMMEDIATELY proceed with implementing the documentation without requiring further "
|
||||
"consultation. Focus on the precise documentation improvements needed."
|
||||
)
|
||||
|
||||
def get_skip_reason(self) -> str:
|
||||
"""Docgen-specific skip reason."""
|
||||
return "Claude completed comprehensive documentation analysis"
|
||||
|
||||
def get_request_relevant_context(self, request) -> list:
|
||||
"""Get relevant_context for docgen tool."""
|
||||
try:
|
||||
return request.relevant_context or []
|
||||
except AttributeError:
|
||||
return []
|
||||
|
||||
def get_request_num_files_documented(self, request) -> int:
|
||||
"""Get num_files_documented from request. Override for custom handling."""
|
||||
try:
|
||||
return request.num_files_documented or 0
|
||||
except AttributeError:
|
||||
return 0
|
||||
|
||||
def get_request_total_files_to_document(self, request) -> int:
|
||||
"""Get total_files_to_document from request. Override for custom handling."""
|
||||
try:
|
||||
return request.total_files_to_document or 0
|
||||
except AttributeError:
|
||||
return 0
|
||||
|
||||
def get_skip_expert_analysis_status(self) -> str:
|
||||
"""Docgen-specific expert analysis skip status."""
|
||||
return "skipped_due_to_complete_analysis"
|
||||
|
||||
def prepare_work_summary(self) -> str:
|
||||
"""Docgen-specific work summary."""
|
||||
try:
|
||||
return f"Completed {len(self.work_history)} documentation analysis steps"
|
||||
except AttributeError:
|
||||
return "Completed documentation analysis"
|
||||
|
||||
def get_completion_next_steps_message(self, expert_analysis_used: bool = False) -> str:
|
||||
"""
|
||||
Docgen-specific completion message.
|
||||
"""
|
||||
return (
|
||||
"DOCUMENTATION ANALYSIS IS COMPLETE FOR ALL FILES (num_files_documented equals total_files_to_document). "
|
||||
"MANDATORY FINAL VERIFICATION: Before presenting your summary, you MUST perform a final verification scan. "
|
||||
"Read through EVERY file you documented and check EVERY function, method, class, and property to confirm "
|
||||
"it has proper documentation including complexity analysis and call flow information. If ANY items lack "
|
||||
"documentation, document them immediately before finishing. "
|
||||
"THEN present a clear summary showing: 1) Final counters: num_files_documented out of total_files_to_document, "
|
||||
"2) Complete accountability list of ALL files you documented with verification status, "
|
||||
"3) Detailed list of EVERY function/method you documented in each file (proving complete coverage), "
|
||||
"4) Any dependency relationships you discovered between files, 5) Recommended documentation improvements with concrete examples including "
|
||||
"complexity analysis and call flow information. 6) **CRITICAL**: List any bugs or logic issues you found "
|
||||
"during documentation but did NOT fix - present these to the user and ask what they'd like to do about them. "
|
||||
"Make it easy for a developer to see the complete documentation status across the entire codebase with full accountability."
|
||||
)
|
||||
|
||||
def get_step_guidance_message(self, request) -> str:
|
||||
"""
|
||||
Docgen-specific step guidance with detailed analysis instructions.
|
||||
"""
|
||||
step_guidance = self.get_step_guidance(request.step_number, request.confidence, request)
|
||||
return step_guidance["next_steps"]
|
||||
|
||||
def customize_workflow_response(self, response_data: dict, request) -> dict:
|
||||
"""
|
||||
Customize response to match docgen tool format.
|
||||
"""
|
||||
# Store initial request on first step
|
||||
if request.step_number == 1:
|
||||
self.initial_request = request.step
|
||||
|
||||
# Convert generic status names to docgen-specific ones
|
||||
tool_name = self.get_name()
|
||||
status_mapping = {
|
||||
f"{tool_name}_in_progress": "documentation_analysis_in_progress",
|
||||
f"pause_for_{tool_name}": "pause_for_documentation_analysis",
|
||||
f"{tool_name}_required": "documentation_analysis_required",
|
||||
f"{tool_name}_complete": "documentation_analysis_complete",
|
||||
}
|
||||
|
||||
if response_data["status"] in status_mapping:
|
||||
response_data["status"] = status_mapping[response_data["status"]]
|
||||
|
||||
# Rename status field to match docgen tool
|
||||
if f"{tool_name}_status" in response_data:
|
||||
response_data["documentation_analysis_status"] = response_data.pop(f"{tool_name}_status")
|
||||
# Add docgen-specific status fields
|
||||
response_data["documentation_analysis_status"]["documentation_strategies"] = len(
|
||||
self.consolidated_findings.hypotheses
|
||||
)
|
||||
|
||||
# Rename complete documentation analysis data
|
||||
if f"complete_{tool_name}" in response_data:
|
||||
response_data["complete_documentation_analysis"] = response_data.pop(f"complete_{tool_name}")
|
||||
|
||||
# Map the completion flag to match docgen tool
|
||||
if f"{tool_name}_complete" in response_data:
|
||||
response_data["documentation_analysis_complete"] = response_data.pop(f"{tool_name}_complete")
|
||||
|
||||
# Map the required flag to match docgen tool
|
||||
if f"{tool_name}_required" in response_data:
|
||||
response_data["documentation_analysis_required"] = response_data.pop(f"{tool_name}_required")
|
||||
|
||||
return response_data
|
||||
|
||||
# Required abstract methods from BaseTool
|
||||
def get_request_model(self):
|
||||
"""Return the docgen-specific request model."""
|
||||
return DocgenRequest
|
||||
|
||||
async def prepare_prompt(self, request) -> str:
|
||||
"""Not used - workflow tools use execute_workflow()."""
|
||||
return "" # Workflow tools use execute_workflow() directly
|
||||
@@ -12,8 +12,9 @@ from typing import Any, Optional
|
||||
|
||||
from mcp.types import TextContent
|
||||
|
||||
from tools.base import BaseTool, ToolRequest
|
||||
from tools.models import ToolModelCategory, ToolOutput
|
||||
from tools.shared.base_models import ToolRequest
|
||||
from tools.shared.base_tool import BaseTool
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -37,7 +38,7 @@ class ListModelsTool(BaseTool):
|
||||
"LIST AVAILABLE MODELS - Display all AI models organized by provider. "
|
||||
"Shows which providers are configured, available models, their aliases, "
|
||||
"context windows, and capabilities. Useful for understanding what models "
|
||||
"can be used and their characteristics."
|
||||
"can be used and their characteristics. MANDATORY: Must display full output to the user."
|
||||
)
|
||||
|
||||
def get_input_schema(self) -> dict[str, Any]:
|
||||
|
||||
@@ -23,9 +23,6 @@ class ContinuationOffer(BaseModel):
|
||||
..., description="Thread continuation ID for multi-turn conversations across different tools"
|
||||
)
|
||||
note: str = Field(..., description="Message explaining continuation opportunity to Claude")
|
||||
suggested_tool_params: Optional[dict[str, Any]] = Field(
|
||||
None, description="Suggested parameters for continued tool usage"
|
||||
)
|
||||
remaining_turns: int = Field(..., description="Number of conversation turns remaining")
|
||||
|
||||
|
||||
|
||||
@@ -670,7 +670,7 @@ class RefactorTool(WorkflowTool):
|
||||
response_data["refactoring_status"]["opportunities_by_type"] = refactor_types
|
||||
response_data["refactoring_status"]["refactor_confidence"] = request.confidence
|
||||
|
||||
# Map complete_refactorworkflow to complete_refactoring
|
||||
# Map complete_refactor to complete_refactoring
|
||||
if f"complete_{tool_name}" in response_data:
|
||||
response_data["complete_refactoring"] = response_data.pop(f"complete_{tool_name}")
|
||||
|
||||
|
||||
@@ -256,6 +256,7 @@ class BaseTool(ABC):
|
||||
# Find all custom models (is_custom=true)
|
||||
for alias in registry.list_aliases():
|
||||
config = registry.resolve(alias)
|
||||
# Use hasattr for defensive programming - is_custom is optional with default False
|
||||
if config and hasattr(config, "is_custom") and config.is_custom:
|
||||
if alias not in all_models:
|
||||
all_models.append(alias)
|
||||
@@ -345,6 +346,7 @@ class BaseTool(ABC):
|
||||
# Find all custom models (is_custom=true)
|
||||
for alias in registry.list_aliases():
|
||||
config = registry.resolve(alias)
|
||||
# Use hasattr for defensive programming - is_custom is optional with default False
|
||||
if config and hasattr(config, "is_custom") and config.is_custom:
|
||||
# Format context window
|
||||
context_tokens = config.context_window
|
||||
@@ -798,6 +800,23 @@ class BaseTool(ABC):
|
||||
|
||||
return prompt_content, updated_files if updated_files else None
|
||||
|
||||
def get_prompt_content_for_size_validation(self, user_content: str) -> str:
|
||||
"""
|
||||
Get the content that should be validated for MCP prompt size limits.
|
||||
|
||||
This hook method allows tools to specify what content should be checked
|
||||
against the MCP transport size limit. By default, it returns the user content,
|
||||
but can be overridden to exclude conversation history when needed.
|
||||
|
||||
Args:
|
||||
user_content: The user content that would normally be validated
|
||||
|
||||
Returns:
|
||||
The content that should actually be validated for size limits
|
||||
"""
|
||||
# Default implementation: validate the full user content
|
||||
return user_content
|
||||
|
||||
def check_prompt_size(self, text: str) -> Optional[dict[str, Any]]:
|
||||
"""
|
||||
Check if USER INPUT text is too large for MCP transport boundary.
|
||||
@@ -841,6 +860,7 @@ class BaseTool(ABC):
|
||||
reserve_tokens: int = 1_000,
|
||||
remaining_budget: Optional[int] = None,
|
||||
arguments: Optional[dict] = None,
|
||||
model_context: Optional[Any] = None,
|
||||
) -> tuple[str, list[str]]:
|
||||
"""
|
||||
Centralized file processing implementing dual prioritization strategy.
|
||||
@@ -855,6 +875,7 @@ class BaseTool(ABC):
|
||||
reserve_tokens: Tokens to reserve for additional prompt content (default 1K)
|
||||
remaining_budget: Remaining token budget after conversation history (from server.py)
|
||||
arguments: Original tool arguments (used to extract _remaining_tokens if available)
|
||||
model_context: Model context object with all model information including token allocation
|
||||
|
||||
Returns:
|
||||
tuple[str, list[str]]: (formatted_file_content, actually_processed_files)
|
||||
@@ -877,19 +898,18 @@ class BaseTool(ABC):
|
||||
elif max_tokens is not None:
|
||||
effective_max_tokens = max_tokens - reserve_tokens
|
||||
else:
|
||||
# The execute() method is responsible for setting self._model_context.
|
||||
# A missing context is a programming error, not a fallback case.
|
||||
if not hasattr(self, "_model_context") or not self._model_context:
|
||||
logger.error(
|
||||
f"[FILES] {self.name}: _prepare_file_content_for_prompt called without a valid model context. "
|
||||
"This indicates an incorrect call sequence in the tool's implementation."
|
||||
)
|
||||
# Fail fast to reveal integration issues. A silent fallback with arbitrary
|
||||
# limits can hide bugs and lead to unexpected token usage or silent failures.
|
||||
raise RuntimeError("ModelContext not initialized before file preparation.")
|
||||
# Use model_context for token allocation
|
||||
if not model_context:
|
||||
# Try to get from stored attributes as fallback
|
||||
model_context = getattr(self, "_model_context", None)
|
||||
if not model_context:
|
||||
logger.error(
|
||||
f"[FILES] {self.name}: _prepare_file_content_for_prompt called without model_context. "
|
||||
"This indicates an incorrect call sequence in the tool's implementation."
|
||||
)
|
||||
raise RuntimeError("Model context not provided for file preparation.")
|
||||
|
||||
# This is now the single source of truth for token allocation.
|
||||
model_context = self._model_context
|
||||
try:
|
||||
token_allocation = model_context.calculate_token_allocation()
|
||||
# Standardize on `file_tokens` for consistency and correctness.
|
||||
@@ -1222,6 +1242,220 @@ When recommending searches, be specific about what information you need and why
|
||||
|
||||
return model_name, model_context
|
||||
|
||||
def validate_and_correct_temperature(self, temperature: float, model_context: Any) -> tuple[float, list[str]]:
|
||||
"""
|
||||
Validate and correct temperature for the specified model.
|
||||
|
||||
This method ensures that the temperature value is within the valid range
|
||||
for the specific model being used. Different models have different temperature
|
||||
constraints (e.g., o1 models require temperature=1.0, GPT models support 0-2).
|
||||
|
||||
Args:
|
||||
temperature: Temperature value to validate
|
||||
model_context: Model context object containing model name, provider, and capabilities
|
||||
|
||||
Returns:
|
||||
Tuple of (corrected_temperature, warning_messages)
|
||||
"""
|
||||
try:
|
||||
# Use model context capabilities directly - clean OOP approach
|
||||
capabilities = model_context.capabilities
|
||||
constraint = capabilities.temperature_constraint
|
||||
|
||||
warnings = []
|
||||
if not constraint.validate(temperature):
|
||||
corrected = constraint.get_corrected_value(temperature)
|
||||
warning = (
|
||||
f"Temperature {temperature} invalid for {model_context.model_name}. "
|
||||
f"{constraint.get_description()}. Using {corrected} instead."
|
||||
)
|
||||
warnings.append(warning)
|
||||
return corrected, warnings
|
||||
|
||||
return temperature, warnings
|
||||
|
||||
except Exception as e:
|
||||
# If validation fails for any reason, use the original temperature
|
||||
# and log a warning (but don't fail the request)
|
||||
logger.warning(f"Temperature validation failed for {model_context.model_name}: {e}")
|
||||
return temperature, [f"Temperature validation failed: {e}"]
|
||||
|
||||
def _validate_image_limits(
|
||||
self, images: Optional[list[str]], model_context: Optional[Any] = None, continuation_id: Optional[str] = None
|
||||
) -> Optional[dict]:
|
||||
"""
|
||||
Validate image size and count against model capabilities.
|
||||
|
||||
This performs strict validation to ensure we don't exceed model-specific
|
||||
image limits. Uses capability-based validation with actual model
|
||||
configuration rather than hard-coded limits.
|
||||
|
||||
Args:
|
||||
images: List of image paths/data URLs to validate
|
||||
model_context: Model context object containing model name, provider, and capabilities
|
||||
continuation_id: Optional continuation ID for conversation context
|
||||
|
||||
Returns:
|
||||
Optional[dict]: Error response if validation fails, None if valid
|
||||
"""
|
||||
if not images:
|
||||
return None
|
||||
|
||||
# Import here to avoid circular imports
|
||||
import base64
|
||||
from pathlib import Path
|
||||
|
||||
# Handle legacy calls (positional model_name string)
|
||||
if isinstance(model_context, str):
|
||||
# Legacy call: _validate_image_limits(images, "model-name")
|
||||
logger.warning(
|
||||
"Legacy _validate_image_limits call with model_name string. Use model_context object instead."
|
||||
)
|
||||
try:
|
||||
from utils.model_context import ModelContext
|
||||
|
||||
model_context = ModelContext(model_context)
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to create model context from legacy model_name: {e}")
|
||||
# Generic error response for any unavailable model
|
||||
return {
|
||||
"status": "error",
|
||||
"content": f"Model '{model_context}' is not available. {str(e)}",
|
||||
"content_type": "text",
|
||||
"metadata": {
|
||||
"error_type": "validation_error",
|
||||
"model_name": model_context,
|
||||
"supports_images": None, # Unknown since model doesn't exist
|
||||
"image_count": len(images) if images else 0,
|
||||
},
|
||||
}
|
||||
|
||||
if not model_context:
|
||||
# Get from tool's stored context as fallback
|
||||
model_context = getattr(self, "_model_context", None)
|
||||
if not model_context:
|
||||
logger.warning("No model context available for image validation")
|
||||
return None
|
||||
|
||||
try:
|
||||
# Use model context capabilities directly - clean OOP approach
|
||||
capabilities = model_context.capabilities
|
||||
model_name = model_context.model_name
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to get capabilities from model_context for image validation: {e}")
|
||||
# Generic error response when capabilities cannot be accessed
|
||||
model_name = getattr(model_context, "model_name", "unknown")
|
||||
return {
|
||||
"status": "error",
|
||||
"content": f"Model '{model_name}' is not available. {str(e)}",
|
||||
"content_type": "text",
|
||||
"metadata": {
|
||||
"error_type": "validation_error",
|
||||
"model_name": model_name,
|
||||
"supports_images": None, # Unknown since model capabilities unavailable
|
||||
"image_count": len(images) if images else 0,
|
||||
},
|
||||
}
|
||||
|
||||
# Check if model supports images
|
||||
if not capabilities.supports_images:
|
||||
return {
|
||||
"status": "error",
|
||||
"content": (
|
||||
f"Image support not available: Model '{model_name}' does not support image processing. "
|
||||
f"Please use a vision-capable model such as 'gemini-2.5-flash', 'o3', "
|
||||
f"or 'claude-3-opus' for image analysis tasks."
|
||||
),
|
||||
"content_type": "text",
|
||||
"metadata": {
|
||||
"error_type": "validation_error",
|
||||
"model_name": model_name,
|
||||
"supports_images": False,
|
||||
"image_count": len(images),
|
||||
},
|
||||
}
|
||||
|
||||
# Get model image limits from capabilities
|
||||
max_images = 5 # Default max number of images
|
||||
max_size_mb = capabilities.max_image_size_mb
|
||||
|
||||
# Check image count
|
||||
if len(images) > max_images:
|
||||
return {
|
||||
"status": "error",
|
||||
"content": (
|
||||
f"Too many images: Model '{model_name}' supports a maximum of {max_images} images, "
|
||||
f"but {len(images)} were provided. Please reduce the number of images."
|
||||
),
|
||||
"content_type": "text",
|
||||
"metadata": {
|
||||
"error_type": "validation_error",
|
||||
"model_name": model_name,
|
||||
"image_count": len(images),
|
||||
"max_images": max_images,
|
||||
},
|
||||
}
|
||||
|
||||
# Calculate total size of all images
|
||||
total_size_mb = 0.0
|
||||
for image_path in images:
|
||||
try:
|
||||
if image_path.startswith("...
|
||||
_, data = image_path.split(",", 1)
|
||||
# Base64 encoding increases size by ~33%, so decode to get actual size
|
||||
actual_size = len(base64.b64decode(data))
|
||||
total_size_mb += actual_size / (1024 * 1024)
|
||||
else:
|
||||
# Handle file path
|
||||
path = Path(image_path)
|
||||
if path.exists():
|
||||
file_size = path.stat().st_size
|
||||
total_size_mb += file_size / (1024 * 1024)
|
||||
else:
|
||||
logger.warning(f"Image file not found: {image_path}")
|
||||
# Assume a reasonable size for missing files to avoid breaking validation
|
||||
total_size_mb += 1.0 # 1MB assumption
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to get size for image {image_path}: {e}")
|
||||
# Assume a reasonable size for problematic files
|
||||
total_size_mb += 1.0 # 1MB assumption
|
||||
|
||||
# Apply 40MB cap for custom models if needed
|
||||
effective_limit_mb = max_size_mb
|
||||
try:
|
||||
from providers.base import ProviderType
|
||||
|
||||
# ModelCapabilities dataclass has provider field defined
|
||||
if capabilities.provider == ProviderType.CUSTOM:
|
||||
effective_limit_mb = min(max_size_mb, 40.0)
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
# Validate against size limit
|
||||
if total_size_mb > effective_limit_mb:
|
||||
return {
|
||||
"status": "error",
|
||||
"content": (
|
||||
f"Image size limit exceeded: Model '{model_name}' supports maximum {effective_limit_mb:.1f}MB "
|
||||
f"for all images combined, but {total_size_mb:.1f}MB was provided. "
|
||||
f"Please reduce image sizes or count and try again."
|
||||
),
|
||||
"content_type": "text",
|
||||
"metadata": {
|
||||
"error_type": "validation_error",
|
||||
"model_name": model_name,
|
||||
"total_size_mb": round(total_size_mb, 2),
|
||||
"limit_mb": round(effective_limit_mb, 2),
|
||||
"image_count": len(images),
|
||||
"supports_images": True,
|
||||
},
|
||||
}
|
||||
|
||||
# All validations passed
|
||||
logger.debug(f"Image validation passed: {len(images)} images, {total_size_mb:.1f}MB total")
|
||||
return None
|
||||
|
||||
def _parse_response(self, raw_text: str, request, model_info: Optional[dict] = None):
|
||||
"""Parse response - will be inherited for now."""
|
||||
# Implementation inherited from current base.py
|
||||
|
||||
@@ -100,6 +100,23 @@ class SimpleTool(BaseTool):
|
||||
"""
|
||||
return []
|
||||
|
||||
def format_response(self, response: str, request, model_info: Optional[dict] = None) -> str:
|
||||
"""
|
||||
Format the AI response before returning to the client.
|
||||
|
||||
This is a hook method that subclasses can override to customize
|
||||
response formatting. The default implementation returns the response as-is.
|
||||
|
||||
Args:
|
||||
response: The raw response from the AI model
|
||||
request: The validated request object
|
||||
model_info: Optional model information dictionary
|
||||
|
||||
Returns:
|
||||
Formatted response string
|
||||
"""
|
||||
return response
|
||||
|
||||
def get_input_schema(self) -> dict[str, Any]:
|
||||
"""
|
||||
Generate the complete input schema using SchemaBuilder.
|
||||
@@ -110,6 +127,9 @@ class SimpleTool(BaseTool):
|
||||
- Model field with proper auto-mode handling
|
||||
- Required fields from get_required_fields()
|
||||
|
||||
Tools can override this method for custom schema generation while
|
||||
still benefiting from SimpleTool's convenience methods.
|
||||
|
||||
Returns:
|
||||
Complete JSON schema for the tool
|
||||
"""
|
||||
@@ -129,6 +149,500 @@ class SimpleTool(BaseTool):
|
||||
"""
|
||||
return ToolRequest
|
||||
|
||||
# Hook methods for safe attribute access without hasattr/getattr
|
||||
|
||||
def get_request_model_name(self, request) -> Optional[str]:
|
||||
"""Get model name from request. Override for custom model name handling."""
|
||||
try:
|
||||
return request.model
|
||||
except AttributeError:
|
||||
return None
|
||||
|
||||
def get_request_images(self, request) -> list:
|
||||
"""Get images from request. Override for custom image handling."""
|
||||
try:
|
||||
return request.images if request.images is not None else []
|
||||
except AttributeError:
|
||||
return []
|
||||
|
||||
def get_request_continuation_id(self, request) -> Optional[str]:
|
||||
"""Get continuation_id from request. Override for custom continuation handling."""
|
||||
try:
|
||||
return request.continuation_id
|
||||
except AttributeError:
|
||||
return None
|
||||
|
||||
def get_request_prompt(self, request) -> str:
|
||||
"""Get prompt from request. Override for custom prompt handling."""
|
||||
try:
|
||||
return request.prompt
|
||||
except AttributeError:
|
||||
return ""
|
||||
|
||||
def get_request_temperature(self, request) -> Optional[float]:
|
||||
"""Get temperature from request. Override for custom temperature handling."""
|
||||
try:
|
||||
return request.temperature
|
||||
except AttributeError:
|
||||
return None
|
||||
|
||||
def get_validated_temperature(self, request, model_context: Any) -> tuple[float, list[str]]:
|
||||
"""
|
||||
Get temperature from request and validate it against model constraints.
|
||||
|
||||
This is a convenience method that combines temperature extraction and validation
|
||||
for simple tools. It ensures temperature is within valid range for the model.
|
||||
|
||||
Args:
|
||||
request: The request object containing temperature
|
||||
model_context: Model context object containing model info
|
||||
|
||||
Returns:
|
||||
Tuple of (validated_temperature, warning_messages)
|
||||
"""
|
||||
temperature = self.get_request_temperature(request)
|
||||
if temperature is None:
|
||||
temperature = self.get_default_temperature()
|
||||
return self.validate_and_correct_temperature(temperature, model_context)
|
||||
|
||||
def get_request_thinking_mode(self, request) -> Optional[str]:
|
||||
"""Get thinking_mode from request. Override for custom thinking mode handling."""
|
||||
try:
|
||||
return request.thinking_mode
|
||||
except AttributeError:
|
||||
return None
|
||||
|
||||
def get_request_files(self, request) -> list:
|
||||
"""Get files from request. Override for custom file handling."""
|
||||
try:
|
||||
return request.files if request.files is not None else []
|
||||
except AttributeError:
|
||||
return []
|
||||
|
||||
def get_request_use_websearch(self, request) -> bool:
|
||||
"""Get use_websearch from request. Override for custom websearch handling."""
|
||||
try:
|
||||
return request.use_websearch if request.use_websearch is not None else True
|
||||
except AttributeError:
|
||||
return True
|
||||
|
||||
def get_request_as_dict(self, request) -> dict:
|
||||
"""Convert request to dictionary. Override for custom serialization."""
|
||||
try:
|
||||
# Try Pydantic v2 method first
|
||||
return request.model_dump()
|
||||
except AttributeError:
|
||||
try:
|
||||
# Fall back to Pydantic v1 method
|
||||
return request.dict()
|
||||
except AttributeError:
|
||||
# Last resort - convert to dict manually
|
||||
return {"prompt": self.get_request_prompt(request)}
|
||||
|
||||
def set_request_files(self, request, files: list) -> None:
|
||||
"""Set files on request. Override for custom file setting."""
|
||||
try:
|
||||
request.files = files
|
||||
except AttributeError:
|
||||
# If request doesn't support file setting, ignore silently
|
||||
pass
|
||||
|
||||
def get_actually_processed_files(self) -> list:
|
||||
"""Get actually processed files. Override for custom file tracking."""
|
||||
try:
|
||||
return self._actually_processed_files
|
||||
except AttributeError:
|
||||
return []
|
||||
|
||||
async def execute(self, arguments: dict[str, Any]) -> list:
|
||||
"""
|
||||
Execute the simple tool using the comprehensive flow from old base.py.
|
||||
|
||||
This method replicates the proven execution pattern while using SimpleTool hooks.
|
||||
"""
|
||||
import json
|
||||
import logging
|
||||
|
||||
from mcp.types import TextContent
|
||||
|
||||
from tools.models import ToolOutput
|
||||
|
||||
logger = logging.getLogger(f"tools.{self.get_name()}")
|
||||
|
||||
try:
|
||||
# Store arguments for access by helper methods
|
||||
self._current_arguments = arguments
|
||||
|
||||
logger.info(f"🔧 {self.get_name()} tool called with arguments: {list(arguments.keys())}")
|
||||
|
||||
# Validate request using the tool's Pydantic model
|
||||
request_model = self.get_request_model()
|
||||
request = request_model(**arguments)
|
||||
logger.debug(f"Request validation successful for {self.get_name()}")
|
||||
|
||||
# Validate file paths for security
|
||||
# This prevents path traversal attacks and ensures proper access control
|
||||
path_error = self._validate_file_paths(request)
|
||||
if path_error:
|
||||
error_output = ToolOutput(
|
||||
status="error",
|
||||
content=path_error,
|
||||
content_type="text",
|
||||
)
|
||||
return [TextContent(type="text", text=error_output.model_dump_json())]
|
||||
|
||||
# Handle model resolution like old base.py
|
||||
model_name = self.get_request_model_name(request)
|
||||
if not model_name:
|
||||
from config import DEFAULT_MODEL
|
||||
|
||||
model_name = DEFAULT_MODEL
|
||||
|
||||
# Store the current model name for later use
|
||||
self._current_model_name = model_name
|
||||
|
||||
# Handle model context from arguments (for in-process testing)
|
||||
if "_model_context" in arguments:
|
||||
self._model_context = arguments["_model_context"]
|
||||
logger.debug(f"{self.get_name()}: Using model context from arguments")
|
||||
else:
|
||||
# Create model context if not provided
|
||||
from utils.model_context import ModelContext
|
||||
|
||||
self._model_context = ModelContext(model_name)
|
||||
logger.debug(f"{self.get_name()}: Created model context for {model_name}")
|
||||
|
||||
# Get images if present
|
||||
images = self.get_request_images(request)
|
||||
continuation_id = self.get_request_continuation_id(request)
|
||||
|
||||
# Handle conversation history and prompt preparation
|
||||
if continuation_id:
|
||||
# Check if conversation history is already embedded
|
||||
field_value = self.get_request_prompt(request)
|
||||
if "=== CONVERSATION HISTORY ===" in field_value:
|
||||
# Use pre-embedded history
|
||||
prompt = field_value
|
||||
logger.debug(f"{self.get_name()}: Using pre-embedded conversation history")
|
||||
else:
|
||||
# No embedded history - reconstruct it (for in-process calls)
|
||||
logger.debug(f"{self.get_name()}: No embedded history found, reconstructing conversation")
|
||||
|
||||
# Get thread context
|
||||
from utils.conversation_memory import add_turn, build_conversation_history, get_thread
|
||||
|
||||
thread_context = get_thread(continuation_id)
|
||||
|
||||
if thread_context:
|
||||
# Add user's new input to conversation
|
||||
user_prompt = self.get_request_prompt(request)
|
||||
user_files = self.get_request_files(request)
|
||||
if user_prompt:
|
||||
add_turn(continuation_id, "user", user_prompt, files=user_files)
|
||||
|
||||
# Get updated thread context after adding the turn
|
||||
thread_context = get_thread(continuation_id)
|
||||
logger.debug(
|
||||
f"{self.get_name()}: Retrieved updated thread with {len(thread_context.turns)} turns"
|
||||
)
|
||||
|
||||
# Build conversation history with updated thread context
|
||||
conversation_history, conversation_tokens = build_conversation_history(
|
||||
thread_context, self._model_context
|
||||
)
|
||||
|
||||
# Get the base prompt from the tool
|
||||
base_prompt = await self.prepare_prompt(request)
|
||||
|
||||
# Combine with conversation history
|
||||
if conversation_history:
|
||||
prompt = f"{conversation_history}\n\n=== NEW USER INPUT ===\n{base_prompt}"
|
||||
else:
|
||||
prompt = base_prompt
|
||||
else:
|
||||
# Thread not found, prepare normally
|
||||
logger.warning(f"Thread {continuation_id} not found, preparing prompt normally")
|
||||
prompt = await self.prepare_prompt(request)
|
||||
else:
|
||||
# New conversation, prepare prompt normally
|
||||
prompt = await self.prepare_prompt(request)
|
||||
|
||||
# Add follow-up instructions for new conversations
|
||||
from server import get_follow_up_instructions
|
||||
|
||||
follow_up_instructions = get_follow_up_instructions(0)
|
||||
prompt = f"{prompt}\n\n{follow_up_instructions}"
|
||||
logger.debug(f"Added follow-up instructions for new {self.get_name()} conversation")
|
||||
|
||||
# Validate images if any were provided
|
||||
if images:
|
||||
image_validation_error = self._validate_image_limits(
|
||||
images, model_context=self._model_context, continuation_id=continuation_id
|
||||
)
|
||||
if image_validation_error:
|
||||
return [TextContent(type="text", text=json.dumps(image_validation_error))]
|
||||
|
||||
# Get and validate temperature against model constraints
|
||||
temperature, temp_warnings = self.get_validated_temperature(request, self._model_context)
|
||||
|
||||
# Log any temperature corrections
|
||||
for warning in temp_warnings:
|
||||
logger.warning(warning)
|
||||
|
||||
# Get thinking mode with defaults
|
||||
thinking_mode = self.get_request_thinking_mode(request)
|
||||
if thinking_mode is None:
|
||||
thinking_mode = self.get_default_thinking_mode()
|
||||
|
||||
# Get the provider from model context (clean OOP - no re-fetching)
|
||||
provider = self._model_context.provider
|
||||
|
||||
# Get system prompt for this tool
|
||||
system_prompt = self.get_system_prompt()
|
||||
|
||||
# Generate AI response using the provider
|
||||
logger.info(f"Sending request to {provider.get_provider_type().value} API for {self.get_name()}")
|
||||
logger.info(
|
||||
f"Using model: {self._model_context.model_name} via {provider.get_provider_type().value} provider"
|
||||
)
|
||||
|
||||
# Estimate tokens for logging
|
||||
from utils.token_utils import estimate_tokens
|
||||
|
||||
estimated_tokens = estimate_tokens(prompt)
|
||||
logger.debug(f"Prompt length: {len(prompt)} characters (~{estimated_tokens:,} tokens)")
|
||||
|
||||
# Generate content with provider abstraction
|
||||
model_response = provider.generate_content(
|
||||
prompt=prompt,
|
||||
model_name=self._current_model_name,
|
||||
system_prompt=system_prompt,
|
||||
temperature=temperature,
|
||||
thinking_mode=thinking_mode if provider.supports_thinking_mode(self._current_model_name) else None,
|
||||
images=images if images else None,
|
||||
)
|
||||
|
||||
logger.info(f"Received response from {provider.get_provider_type().value} API for {self.get_name()}")
|
||||
|
||||
# Process the model's response
|
||||
if model_response.content:
|
||||
raw_text = model_response.content
|
||||
|
||||
# Create model info for conversation tracking
|
||||
model_info = {
|
||||
"provider": provider,
|
||||
"model_name": self._current_model_name,
|
||||
"model_response": model_response,
|
||||
}
|
||||
|
||||
# Parse response using the same logic as old base.py
|
||||
tool_output = self._parse_response(raw_text, request, model_info)
|
||||
logger.info(f"✅ {self.get_name()} tool completed successfully")
|
||||
|
||||
else:
|
||||
# Handle cases where the model couldn't generate a response
|
||||
finish_reason = model_response.metadata.get("finish_reason", "Unknown")
|
||||
logger.warning(f"Response blocked or incomplete for {self.get_name()}. Finish reason: {finish_reason}")
|
||||
tool_output = ToolOutput(
|
||||
status="error",
|
||||
content=f"Response blocked or incomplete. Finish reason: {finish_reason}",
|
||||
content_type="text",
|
||||
)
|
||||
|
||||
# Return the tool output as TextContent
|
||||
return [TextContent(type="text", text=tool_output.model_dump_json())]
|
||||
|
||||
except Exception as e:
|
||||
# Special handling for MCP size check errors
|
||||
if str(e).startswith("MCP_SIZE_CHECK:"):
|
||||
# Extract the JSON content after the prefix
|
||||
json_content = str(e)[len("MCP_SIZE_CHECK:") :]
|
||||
return [TextContent(type="text", text=json_content)]
|
||||
|
||||
logger.error(f"Error in {self.get_name()}: {str(e)}")
|
||||
error_output = ToolOutput(
|
||||
status="error",
|
||||
content=f"Error in {self.get_name()}: {str(e)}",
|
||||
content_type="text",
|
||||
)
|
||||
return [TextContent(type="text", text=error_output.model_dump_json())]
|
||||
|
||||
def _parse_response(self, raw_text: str, request, model_info: Optional[dict] = None):
|
||||
"""
|
||||
Parse the raw response and format it using the hook method.
|
||||
|
||||
This simplified version focuses on the SimpleTool pattern: format the response
|
||||
using the format_response hook, then handle conversation continuation.
|
||||
"""
|
||||
from tools.models import ToolOutput
|
||||
|
||||
# Format the response using the hook method
|
||||
formatted_response = self.format_response(raw_text, request, model_info)
|
||||
|
||||
# Handle conversation continuation like old base.py
|
||||
continuation_id = self.get_request_continuation_id(request)
|
||||
if continuation_id:
|
||||
# Add turn to conversation memory
|
||||
from utils.conversation_memory import add_turn
|
||||
|
||||
# Extract model metadata for conversation tracking
|
||||
model_provider = None
|
||||
model_name = None
|
||||
model_metadata = None
|
||||
|
||||
if model_info:
|
||||
provider = model_info.get("provider")
|
||||
if provider:
|
||||
# Handle both provider objects and string values
|
||||
if isinstance(provider, str):
|
||||
model_provider = provider
|
||||
else:
|
||||
try:
|
||||
model_provider = provider.get_provider_type().value
|
||||
except AttributeError:
|
||||
# Fallback if provider doesn't have get_provider_type method
|
||||
model_provider = str(provider)
|
||||
model_name = model_info.get("model_name")
|
||||
model_response = model_info.get("model_response")
|
||||
if model_response:
|
||||
model_metadata = {"usage": model_response.usage, "metadata": model_response.metadata}
|
||||
|
||||
# Only add the assistant's response to the conversation
|
||||
# The user's turn is handled elsewhere (when thread is created/continued)
|
||||
add_turn(
|
||||
continuation_id, # thread_id as positional argument
|
||||
"assistant", # role as positional argument
|
||||
raw_text, # content as positional argument
|
||||
files=self.get_request_files(request),
|
||||
images=self.get_request_images(request),
|
||||
tool_name=self.get_name(),
|
||||
model_provider=model_provider,
|
||||
model_name=model_name,
|
||||
model_metadata=model_metadata,
|
||||
)
|
||||
|
||||
# Create continuation offer like old base.py
|
||||
continuation_data = self._create_continuation_offer(request, model_info)
|
||||
if continuation_data:
|
||||
return self._create_continuation_offer_response(formatted_response, continuation_data, request, model_info)
|
||||
else:
|
||||
# Build metadata with model and provider info for success response
|
||||
metadata = {}
|
||||
if model_info:
|
||||
model_name = model_info.get("model_name")
|
||||
if model_name:
|
||||
metadata["model_used"] = model_name
|
||||
provider = model_info.get("provider")
|
||||
if provider:
|
||||
# Handle both provider objects and string values
|
||||
if isinstance(provider, str):
|
||||
metadata["provider_used"] = provider
|
||||
else:
|
||||
try:
|
||||
metadata["provider_used"] = provider.get_provider_type().value
|
||||
except AttributeError:
|
||||
# Fallback if provider doesn't have get_provider_type method
|
||||
metadata["provider_used"] = str(provider)
|
||||
|
||||
return ToolOutput(
|
||||
status="success",
|
||||
content=formatted_response,
|
||||
content_type="text",
|
||||
metadata=metadata if metadata else None,
|
||||
)
|
||||
|
||||
def _create_continuation_offer(self, request, model_info: Optional[dict] = None):
|
||||
"""Create continuation offer following old base.py pattern"""
|
||||
continuation_id = self.get_request_continuation_id(request)
|
||||
|
||||
try:
|
||||
from utils.conversation_memory import create_thread, get_thread
|
||||
|
||||
if continuation_id:
|
||||
# Existing conversation
|
||||
thread_context = get_thread(continuation_id)
|
||||
if thread_context and thread_context.turns:
|
||||
turn_count = len(thread_context.turns)
|
||||
from utils.conversation_memory import MAX_CONVERSATION_TURNS
|
||||
|
||||
if turn_count >= MAX_CONVERSATION_TURNS - 1:
|
||||
return None # No more turns allowed
|
||||
|
||||
remaining_turns = MAX_CONVERSATION_TURNS - turn_count - 1
|
||||
return {
|
||||
"continuation_id": continuation_id,
|
||||
"remaining_turns": remaining_turns,
|
||||
"note": f"Claude can continue this conversation for {remaining_turns} more exchanges.",
|
||||
}
|
||||
else:
|
||||
# New conversation - create thread and offer continuation
|
||||
# Convert request to dict for initial_context
|
||||
initial_request_dict = self.get_request_as_dict(request)
|
||||
|
||||
new_thread_id = create_thread(tool_name=self.get_name(), initial_request=initial_request_dict)
|
||||
|
||||
# Add the initial user turn to the new thread
|
||||
from utils.conversation_memory import MAX_CONVERSATION_TURNS, add_turn
|
||||
|
||||
user_prompt = self.get_request_prompt(request)
|
||||
user_files = self.get_request_files(request)
|
||||
user_images = self.get_request_images(request)
|
||||
|
||||
# Add user's initial turn
|
||||
add_turn(
|
||||
new_thread_id, "user", user_prompt, files=user_files, images=user_images, tool_name=self.get_name()
|
||||
)
|
||||
|
||||
return {
|
||||
"continuation_id": new_thread_id,
|
||||
"remaining_turns": MAX_CONVERSATION_TURNS - 1,
|
||||
"note": f"Claude can continue this conversation for {MAX_CONVERSATION_TURNS - 1} more exchanges.",
|
||||
}
|
||||
except Exception:
|
||||
return None
|
||||
|
||||
def _create_continuation_offer_response(
|
||||
self, content: str, continuation_data: dict, request, model_info: Optional[dict] = None
|
||||
):
|
||||
"""Create response with continuation offer following old base.py pattern"""
|
||||
from tools.models import ContinuationOffer, ToolOutput
|
||||
|
||||
try:
|
||||
continuation_offer = ContinuationOffer(
|
||||
continuation_id=continuation_data["continuation_id"],
|
||||
note=continuation_data["note"],
|
||||
remaining_turns=continuation_data["remaining_turns"],
|
||||
)
|
||||
|
||||
# Build metadata with model and provider info
|
||||
metadata = {"tool_name": self.get_name(), "conversation_ready": True}
|
||||
if model_info:
|
||||
model_name = model_info.get("model_name")
|
||||
if model_name:
|
||||
metadata["model_used"] = model_name
|
||||
provider = model_info.get("provider")
|
||||
if provider:
|
||||
# Handle both provider objects and string values
|
||||
if isinstance(provider, str):
|
||||
metadata["provider_used"] = provider
|
||||
else:
|
||||
try:
|
||||
metadata["provider_used"] = provider.get_provider_type().value
|
||||
except AttributeError:
|
||||
# Fallback if provider doesn't have get_provider_type method
|
||||
metadata["provider_used"] = str(provider)
|
||||
|
||||
return ToolOutput(
|
||||
status="continuation_available",
|
||||
content=content,
|
||||
content_type="text",
|
||||
continuation_offer=continuation_offer,
|
||||
metadata=metadata,
|
||||
)
|
||||
except Exception:
|
||||
# Fallback to simple success if continuation offer fails
|
||||
return ToolOutput(status="success", content=content, content_type="text")
|
||||
|
||||
# Convenience methods for common tool patterns
|
||||
|
||||
def build_standard_prompt(
|
||||
@@ -153,9 +667,13 @@ class SimpleTool(BaseTool):
|
||||
Complete formatted prompt ready for the AI model
|
||||
"""
|
||||
# Add context files if provided
|
||||
if hasattr(request, "files") and request.files:
|
||||
files = self.get_request_files(request)
|
||||
if files:
|
||||
file_content, processed_files = self._prepare_file_content_for_prompt(
|
||||
request.files, request.continuation_id, "Context files"
|
||||
files,
|
||||
self.get_request_continuation_id(request),
|
||||
"Context files",
|
||||
model_context=getattr(self, "_model_context", None),
|
||||
)
|
||||
self._actually_processed_files = processed_files
|
||||
if file_content:
|
||||
@@ -166,8 +684,9 @@ class SimpleTool(BaseTool):
|
||||
|
||||
# Add web search instruction if enabled
|
||||
websearch_instruction = ""
|
||||
if hasattr(request, "use_websearch") and request.use_websearch:
|
||||
websearch_instruction = self.get_websearch_instruction(request.use_websearch, self.get_websearch_guidance())
|
||||
use_websearch = self.get_request_use_websearch(request)
|
||||
if use_websearch:
|
||||
websearch_instruction = self.get_websearch_instruction(use_websearch, self.get_websearch_guidance())
|
||||
|
||||
# Combine system prompt with user content
|
||||
full_prompt = f"""{system_prompt}{websearch_instruction}
|
||||
@@ -180,6 +699,32 @@ Please provide a thoughtful, comprehensive response:"""
|
||||
|
||||
return full_prompt
|
||||
|
||||
def get_prompt_content_for_size_validation(self, user_content: str) -> str:
|
||||
"""
|
||||
Override to use original user prompt for size validation when conversation history is embedded.
|
||||
|
||||
When server.py embeds conversation history into the prompt field, it also stores
|
||||
the original user prompt in _original_user_prompt. We use that for size validation
|
||||
to avoid incorrectly triggering size limits due to conversation history.
|
||||
|
||||
Args:
|
||||
user_content: The user content (may include conversation history)
|
||||
|
||||
Returns:
|
||||
The original user prompt if available, otherwise the full user content
|
||||
"""
|
||||
# Check if we have the current arguments from execute() method
|
||||
current_args = getattr(self, "_current_arguments", None)
|
||||
if current_args:
|
||||
# If server.py embedded conversation history, it stores original prompt separately
|
||||
original_user_prompt = current_args.get("_original_user_prompt")
|
||||
if original_user_prompt is not None:
|
||||
# Use original user prompt for size validation (excludes conversation history)
|
||||
return original_user_prompt
|
||||
|
||||
# Fallback to default behavior (validate full user content)
|
||||
return user_content
|
||||
|
||||
def get_websearch_guidance(self) -> Optional[str]:
|
||||
"""
|
||||
Return tool-specific web search guidance.
|
||||
@@ -210,23 +755,121 @@ Please provide a thoughtful, comprehensive response:"""
|
||||
ValueError: If prompt is too large for MCP transport
|
||||
"""
|
||||
# Check for prompt.txt in files
|
||||
if hasattr(request, "files"):
|
||||
prompt_content, updated_files = self.handle_prompt_file(request.files)
|
||||
files = self.get_request_files(request)
|
||||
if files:
|
||||
prompt_content, updated_files = self.handle_prompt_file(files)
|
||||
|
||||
# Update request files list
|
||||
# Update request files list if needed
|
||||
if updated_files is not None:
|
||||
request.files = updated_files
|
||||
self.set_request_files(request, updated_files)
|
||||
else:
|
||||
prompt_content = None
|
||||
|
||||
# Use prompt.txt content if available, otherwise use the prompt field
|
||||
user_content = prompt_content if prompt_content else getattr(request, "prompt", "")
|
||||
user_content = prompt_content if prompt_content else self.get_request_prompt(request)
|
||||
|
||||
# Check user input size at MCP transport boundary
|
||||
size_check = self.check_prompt_size(user_content)
|
||||
# Check user input size at MCP transport boundary (excluding conversation history)
|
||||
validation_content = self.get_prompt_content_for_size_validation(user_content)
|
||||
size_check = self.check_prompt_size(validation_content)
|
||||
if size_check:
|
||||
from tools.models import ToolOutput
|
||||
|
||||
raise ValueError(f"MCP_SIZE_CHECK:{ToolOutput(**size_check).model_dump_json()}")
|
||||
|
||||
return user_content
|
||||
|
||||
def get_chat_style_websearch_guidance(self) -> str:
|
||||
"""
|
||||
Get Chat tool-style web search guidance.
|
||||
|
||||
Returns web search guidance that matches the original Chat tool pattern.
|
||||
This is useful for tools that want to maintain the same search behavior.
|
||||
|
||||
Returns:
|
||||
Web search guidance text
|
||||
"""
|
||||
return """When discussing topics, consider if searches for these would help:
|
||||
- Documentation for any technologies or concepts mentioned
|
||||
- Current best practices and patterns
|
||||
- Recent developments or updates
|
||||
- Community discussions and solutions"""
|
||||
|
||||
def supports_custom_request_model(self) -> bool:
|
||||
"""
|
||||
Indicate whether this tool supports custom request models.
|
||||
|
||||
Simple tools support custom request models by default. Tools that override
|
||||
get_request_model() to return something other than ToolRequest should
|
||||
return True here.
|
||||
|
||||
Returns:
|
||||
True if the tool uses a custom request model
|
||||
"""
|
||||
return self.get_request_model() != ToolRequest
|
||||
|
||||
def _validate_file_paths(self, request) -> Optional[str]:
|
||||
"""
|
||||
Validate that all file paths in the request are absolute paths.
|
||||
|
||||
This is a security measure to prevent path traversal attacks and ensure
|
||||
proper access control. All file paths must be absolute (starting with '/').
|
||||
|
||||
Args:
|
||||
request: The validated request object
|
||||
|
||||
Returns:
|
||||
Optional[str]: Error message if validation fails, None if all paths are valid
|
||||
"""
|
||||
import os
|
||||
|
||||
# Check if request has 'files' attribute (used by most tools)
|
||||
files = self.get_request_files(request)
|
||||
if files:
|
||||
for file_path in files:
|
||||
if not os.path.isabs(file_path):
|
||||
return (
|
||||
f"Error: All file paths must be FULL absolute paths to real files / folders - DO NOT SHORTEN. "
|
||||
f"Received relative path: {file_path}\n"
|
||||
f"Please provide the full absolute path starting with '/' (must be FULL absolute paths to real files / folders - DO NOT SHORTEN)"
|
||||
)
|
||||
|
||||
return None
|
||||
|
||||
def prepare_chat_style_prompt(self, request, system_prompt: str = None) -> str:
|
||||
"""
|
||||
Prepare a prompt using Chat tool-style patterns.
|
||||
|
||||
This convenience method replicates the Chat tool's prompt preparation logic:
|
||||
1. Handle prompt.txt file if present
|
||||
2. Add file context with specific formatting
|
||||
3. Add web search guidance
|
||||
4. Format with system prompt
|
||||
|
||||
Args:
|
||||
request: The validated request object
|
||||
system_prompt: System prompt to use (uses get_system_prompt() if None)
|
||||
|
||||
Returns:
|
||||
Complete formatted prompt
|
||||
"""
|
||||
# Use provided system prompt or get from tool
|
||||
if system_prompt is None:
|
||||
system_prompt = self.get_system_prompt()
|
||||
|
||||
# Get user content (handles prompt.txt files)
|
||||
user_content = self.handle_prompt_file_with_fallback(request)
|
||||
|
||||
# Build standard prompt with Chat-style web search guidance
|
||||
websearch_guidance = self.get_chat_style_websearch_guidance()
|
||||
|
||||
# Override the websearch guidance temporarily
|
||||
original_guidance = self.get_websearch_guidance
|
||||
self.get_websearch_guidance = lambda: websearch_guidance
|
||||
|
||||
try:
|
||||
full_prompt = self.build_standard_prompt(system_prompt, user_content, request, "CONTEXT FILES")
|
||||
finally:
|
||||
# Restore original guidance method
|
||||
self.get_websearch_guidance = original_guidance
|
||||
|
||||
return full_prompt
|
||||
|
||||
@@ -147,6 +147,8 @@ class TestGenTool(WorkflowTool):
|
||||
including edge case identification, framework detection, and comprehensive coverage planning.
|
||||
"""
|
||||
|
||||
__test__ = False # Prevent pytest from collecting this class as a test
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.initial_request = None
|
||||
|
||||
350
tools/version.py
Normal file
350
tools/version.py
Normal file
@@ -0,0 +1,350 @@
|
||||
"""
|
||||
Version Tool - Display Zen MCP Server version and system information
|
||||
|
||||
This tool provides version information about the Zen MCP Server including
|
||||
version number, last update date, author, and basic system information.
|
||||
It also checks for updates from the GitHub repository.
|
||||
"""
|
||||
|
||||
import logging
|
||||
import platform
|
||||
import re
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Any, Optional
|
||||
|
||||
try:
|
||||
from urllib.error import HTTPError, URLError
|
||||
from urllib.request import urlopen
|
||||
|
||||
HAS_URLLIB = True
|
||||
except ImportError:
|
||||
HAS_URLLIB = False
|
||||
|
||||
from mcp.types import TextContent
|
||||
|
||||
from config import __author__, __updated__, __version__
|
||||
from tools.models import ToolModelCategory, ToolOutput
|
||||
from tools.shared.base_models import ToolRequest
|
||||
from tools.shared.base_tool import BaseTool
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def parse_version(version_str: str) -> tuple[int, int, int]:
|
||||
"""
|
||||
Parse version string to tuple of integers for comparison.
|
||||
|
||||
Args:
|
||||
version_str: Version string like "5.5.5"
|
||||
|
||||
Returns:
|
||||
Tuple of (major, minor, patch) as integers
|
||||
"""
|
||||
try:
|
||||
parts = version_str.strip().split(".")
|
||||
if len(parts) >= 3:
|
||||
return (int(parts[0]), int(parts[1]), int(parts[2]))
|
||||
elif len(parts) == 2:
|
||||
return (int(parts[0]), int(parts[1]), 0)
|
||||
elif len(parts) == 1:
|
||||
return (int(parts[0]), 0, 0)
|
||||
else:
|
||||
return (0, 0, 0)
|
||||
except (ValueError, IndexError):
|
||||
return (0, 0, 0)
|
||||
|
||||
|
||||
def compare_versions(current: str, remote: str) -> int:
|
||||
"""
|
||||
Compare two version strings.
|
||||
|
||||
Args:
|
||||
current: Current version string
|
||||
remote: Remote version string
|
||||
|
||||
Returns:
|
||||
-1 if current < remote (update available)
|
||||
0 if current == remote (up to date)
|
||||
1 if current > remote (ahead of remote)
|
||||
"""
|
||||
current_tuple = parse_version(current)
|
||||
remote_tuple = parse_version(remote)
|
||||
|
||||
if current_tuple < remote_tuple:
|
||||
return -1
|
||||
elif current_tuple > remote_tuple:
|
||||
return 1
|
||||
else:
|
||||
return 0
|
||||
|
||||
|
||||
def fetch_github_version() -> Optional[tuple[str, str]]:
|
||||
"""
|
||||
Fetch the latest version information from GitHub repository.
|
||||
|
||||
Returns:
|
||||
Tuple of (version, last_updated) if successful, None if failed
|
||||
"""
|
||||
if not HAS_URLLIB:
|
||||
logger.warning("urllib not available, cannot check for updates")
|
||||
return None
|
||||
|
||||
github_url = "https://raw.githubusercontent.com/BeehiveInnovations/zen-mcp-server/main/config.py"
|
||||
|
||||
try:
|
||||
# Set a 10-second timeout
|
||||
with urlopen(github_url, timeout=10) as response:
|
||||
if response.status != 200:
|
||||
logger.warning(f"HTTP error while checking GitHub: {response.status}")
|
||||
return None
|
||||
|
||||
content = response.read().decode("utf-8")
|
||||
|
||||
# Extract version using regex
|
||||
version_match = re.search(r'__version__\s*=\s*["\']([^"\']+)["\']', content)
|
||||
updated_match = re.search(r'__updated__\s*=\s*["\']([^"\']+)["\']', content)
|
||||
|
||||
if version_match:
|
||||
remote_version = version_match.group(1)
|
||||
remote_updated = updated_match.group(1) if updated_match else "Unknown"
|
||||
return (remote_version, remote_updated)
|
||||
else:
|
||||
logger.warning("Could not parse version from GitHub config.py")
|
||||
return None
|
||||
|
||||
except HTTPError as e:
|
||||
logger.warning(f"HTTP error while checking GitHub: {e.code}")
|
||||
return None
|
||||
except URLError as e:
|
||||
logger.warning(f"URL error while checking GitHub: {e.reason}")
|
||||
return None
|
||||
except Exception as e:
|
||||
logger.warning(f"Error checking GitHub for updates: {e}")
|
||||
return None
|
||||
|
||||
|
||||
class VersionTool(BaseTool):
|
||||
"""
|
||||
Tool for displaying Zen MCP Server version and system information.
|
||||
|
||||
This tool provides:
|
||||
- Current server version
|
||||
- Last update date
|
||||
- Author information
|
||||
- Python version
|
||||
- Platform information
|
||||
"""
|
||||
|
||||
def get_name(self) -> str:
|
||||
return "version"
|
||||
|
||||
def get_description(self) -> str:
|
||||
return (
|
||||
"VERSION & CONFIGURATION - Get server version, configuration details, and list of available tools. "
|
||||
"Useful for debugging and understanding capabilities."
|
||||
)
|
||||
|
||||
def get_input_schema(self) -> dict[str, Any]:
|
||||
"""Return the JSON schema for the tool's input"""
|
||||
return {"type": "object", "properties": {}, "required": []}
|
||||
|
||||
def get_system_prompt(self) -> str:
|
||||
"""No AI model needed for this tool"""
|
||||
return ""
|
||||
|
||||
def get_request_model(self):
|
||||
"""Return the Pydantic model for request validation."""
|
||||
return ToolRequest
|
||||
|
||||
async def prepare_prompt(self, request: ToolRequest) -> str:
|
||||
"""Not used for this utility tool"""
|
||||
return ""
|
||||
|
||||
def format_response(self, response: str, request: ToolRequest, model_info: dict = None) -> str:
|
||||
"""Not used for this utility tool"""
|
||||
return response
|
||||
|
||||
async def execute(self, arguments: dict[str, Any]) -> list[TextContent]:
|
||||
"""
|
||||
Display Zen MCP Server version and system information.
|
||||
|
||||
This overrides the base class execute to provide direct output without AI model calls.
|
||||
|
||||
Args:
|
||||
arguments: Standard tool arguments (none required)
|
||||
|
||||
Returns:
|
||||
Formatted version and system information
|
||||
"""
|
||||
output_lines = ["# Zen MCP Server Version\n"]
|
||||
|
||||
# Server version information
|
||||
output_lines.append("## Server Information")
|
||||
output_lines.append(f"**Current Version**: {__version__}")
|
||||
output_lines.append(f"**Last Updated**: {__updated__}")
|
||||
output_lines.append(f"**Author**: {__author__}")
|
||||
|
||||
# Get the current working directory (MCP server location)
|
||||
current_path = Path.cwd()
|
||||
output_lines.append(f"**Installation Path**: `{current_path}`")
|
||||
output_lines.append("")
|
||||
|
||||
# Check for updates from GitHub
|
||||
output_lines.append("## Update Status")
|
||||
|
||||
try:
|
||||
github_info = fetch_github_version()
|
||||
|
||||
if github_info:
|
||||
remote_version, remote_updated = github_info
|
||||
comparison = compare_versions(__version__, remote_version)
|
||||
|
||||
output_lines.append(f"**Latest Version (GitHub)**: {remote_version}")
|
||||
output_lines.append(f"**Latest Updated**: {remote_updated}")
|
||||
|
||||
if comparison < 0:
|
||||
# Update available
|
||||
output_lines.append("")
|
||||
output_lines.append("🚀 **UPDATE AVAILABLE!**")
|
||||
output_lines.append(
|
||||
f"Your version `{__version__}` is older than the latest version `{remote_version}`"
|
||||
)
|
||||
output_lines.append("")
|
||||
output_lines.append("**To update:**")
|
||||
output_lines.append("```bash")
|
||||
output_lines.append(f"cd {current_path}")
|
||||
output_lines.append("git pull")
|
||||
output_lines.append("```")
|
||||
output_lines.append("")
|
||||
output_lines.append("*Note: Restart your Claude session after updating to use the new version.*")
|
||||
elif comparison == 0:
|
||||
# Up to date
|
||||
output_lines.append("")
|
||||
output_lines.append("✅ **UP TO DATE**")
|
||||
output_lines.append("You are running the latest version.")
|
||||
else:
|
||||
# Ahead of remote (development version)
|
||||
output_lines.append("")
|
||||
output_lines.append("🔬 **DEVELOPMENT VERSION**")
|
||||
output_lines.append(
|
||||
f"Your version `{__version__}` is ahead of the published version `{remote_version}`"
|
||||
)
|
||||
output_lines.append("You may be running a development or custom build.")
|
||||
else:
|
||||
output_lines.append("❌ **Could not check for updates**")
|
||||
output_lines.append("Unable to connect to GitHub or parse version information.")
|
||||
output_lines.append("Check your internet connection or try again later.")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error during version check: {e}")
|
||||
output_lines.append("❌ **Error checking for updates**")
|
||||
output_lines.append(f"Error: {str(e)}")
|
||||
|
||||
output_lines.append("")
|
||||
|
||||
# Python and system information
|
||||
output_lines.append("## System Information")
|
||||
output_lines.append(
|
||||
f"**Python Version**: {sys.version_info.major}.{sys.version_info.minor}.{sys.version_info.micro}"
|
||||
)
|
||||
output_lines.append(f"**Platform**: {platform.system()} {platform.release()}")
|
||||
output_lines.append(f"**Architecture**: {platform.machine()}")
|
||||
output_lines.append("")
|
||||
|
||||
# Available tools
|
||||
try:
|
||||
# Import here to avoid circular imports
|
||||
from server import TOOLS
|
||||
|
||||
tool_names = sorted(TOOLS.keys())
|
||||
output_lines.append("## Available Tools")
|
||||
output_lines.append(f"**Total Tools**: {len(tool_names)}")
|
||||
output_lines.append("\n**Tool List**:")
|
||||
|
||||
for tool_name in tool_names:
|
||||
tool = TOOLS[tool_name]
|
||||
# Get the first line of the tool's description for a brief summary
|
||||
description = tool.get_description().split("\n")[0]
|
||||
# Truncate if too long
|
||||
if len(description) > 80:
|
||||
description = description[:77] + "..."
|
||||
output_lines.append(f"- `{tool_name}` - {description}")
|
||||
|
||||
output_lines.append("")
|
||||
|
||||
except Exception as e:
|
||||
logger.warning(f"Error loading tools list: {e}")
|
||||
output_lines.append("## Available Tools")
|
||||
output_lines.append("**Error**: Could not load tools list")
|
||||
output_lines.append("")
|
||||
|
||||
# Configuration information
|
||||
output_lines.append("## Configuration")
|
||||
|
||||
# Check for configured providers
|
||||
try:
|
||||
from providers.base import ProviderType
|
||||
from providers.registry import ModelProviderRegistry
|
||||
|
||||
provider_status = []
|
||||
|
||||
# Check each provider type
|
||||
provider_types = [
|
||||
ProviderType.GOOGLE,
|
||||
ProviderType.OPENAI,
|
||||
ProviderType.XAI,
|
||||
ProviderType.OPENROUTER,
|
||||
ProviderType.CUSTOM,
|
||||
]
|
||||
provider_names = ["Google Gemini", "OpenAI", "X.AI", "OpenRouter", "Custom/Local"]
|
||||
|
||||
for provider_type, provider_name in zip(provider_types, provider_names):
|
||||
provider = ModelProviderRegistry.get_provider(provider_type)
|
||||
status = "✅ Configured" if provider is not None else "❌ Not configured"
|
||||
provider_status.append(f"- **{provider_name}**: {status}")
|
||||
|
||||
output_lines.append("**Providers**:")
|
||||
output_lines.extend(provider_status)
|
||||
|
||||
# Get total available models
|
||||
try:
|
||||
available_models = ModelProviderRegistry.get_available_models(respect_restrictions=True)
|
||||
output_lines.append(f"\n**Available Models**: {len(available_models)}")
|
||||
except Exception:
|
||||
output_lines.append("\n**Available Models**: Unknown")
|
||||
|
||||
except Exception as e:
|
||||
logger.warning(f"Error checking provider configuration: {e}")
|
||||
output_lines.append("**Providers**: Error checking configuration")
|
||||
|
||||
output_lines.append("")
|
||||
|
||||
# Usage information
|
||||
output_lines.append("## Usage")
|
||||
output_lines.append("- Use `listmodels` tool to see all available AI models")
|
||||
output_lines.append("- Use `chat` for interactive conversations and brainstorming")
|
||||
output_lines.append("- Use workflow tools (`debug`, `codereview`, `docgen`, etc.) for systematic analysis")
|
||||
output_lines.append("- Set DEFAULT_MODEL=auto to let Claude choose the best model for each task")
|
||||
|
||||
# Format output
|
||||
content = "\n".join(output_lines)
|
||||
|
||||
tool_output = ToolOutput(
|
||||
status="success",
|
||||
content=content,
|
||||
content_type="text",
|
||||
metadata={
|
||||
"tool_name": self.name,
|
||||
"server_version": __version__,
|
||||
"last_updated": __updated__,
|
||||
"python_version": f"{sys.version_info.major}.{sys.version_info.minor}.{sys.version_info.micro}",
|
||||
"platform": f"{platform.system()} {platform.release()}",
|
||||
},
|
||||
)
|
||||
|
||||
return [TextContent(type="text", text=tool_output.model_dump_json())]
|
||||
|
||||
def get_model_category(self) -> ToolModelCategory:
|
||||
"""Return the model category for this tool."""
|
||||
return ToolModelCategory.FAST_RESPONSE # Simple version info, no AI needed
|
||||
@@ -28,6 +28,7 @@ from typing import Any, Optional
|
||||
|
||||
from mcp.types import TextContent
|
||||
|
||||
from config import MCP_PROMPT_SIZE_LIMIT
|
||||
from utils.conversation_memory import add_turn, create_thread
|
||||
|
||||
from ..shared.base_models import ConsolidatedFindings
|
||||
@@ -111,6 +112,7 @@ class BaseWorkflowMixin(ABC):
|
||||
description: str,
|
||||
remaining_budget: Optional[int] = None,
|
||||
arguments: Optional[dict[str, Any]] = None,
|
||||
model_context: Optional[Any] = None,
|
||||
) -> tuple[str, list[str]]:
|
||||
"""Prepare file content for prompts. Usually provided by BaseTool."""
|
||||
pass
|
||||
@@ -230,6 +232,23 @@ class BaseWorkflowMixin(ABC):
|
||||
except AttributeError:
|
||||
return self.get_default_temperature()
|
||||
|
||||
def get_validated_temperature(self, request, model_context: Any) -> tuple[float, list[str]]:
|
||||
"""
|
||||
Get temperature from request and validate it against model constraints.
|
||||
|
||||
This is a convenience method that combines temperature extraction and validation
|
||||
for workflow tools. It ensures temperature is within valid range for the model.
|
||||
|
||||
Args:
|
||||
request: The request object containing temperature
|
||||
model_context: Model context object containing model info
|
||||
|
||||
Returns:
|
||||
Tuple of (validated_temperature, warning_messages)
|
||||
"""
|
||||
temperature = self.get_request_temperature(request)
|
||||
return self.validate_and_correct_temperature(temperature, model_context)
|
||||
|
||||
def get_request_thinking_mode(self, request) -> str:
|
||||
"""Get thinking mode from request. Override for custom thinking mode handling."""
|
||||
try:
|
||||
@@ -496,19 +515,22 @@ class BaseWorkflowMixin(ABC):
|
||||
return
|
||||
|
||||
try:
|
||||
# Ensure model context is available - fall back to resolution if needed
|
||||
# Model context should be available from early validation, but might be deferred for tests
|
||||
current_model_context = self.get_current_model_context()
|
||||
if not current_model_context:
|
||||
# Try to resolve model context now (deferred from early validation)
|
||||
try:
|
||||
model_name, model_context = self._resolve_model_context(arguments, request)
|
||||
self._model_context = model_context
|
||||
self._current_model_name = model_name
|
||||
except Exception as e:
|
||||
logger.error(f"[WORKFLOW_FILES] {self.get_name()}: Failed to resolve model context: {e}")
|
||||
# Create fallback model context
|
||||
# Create fallback model context (preserves existing test behavior)
|
||||
from utils.model_context import ModelContext
|
||||
|
||||
model_name = self.get_request_model_name(request)
|
||||
self._model_context = ModelContext(model_name)
|
||||
self._current_model_name = model_name
|
||||
|
||||
# Use the same file preparation logic as BaseTool with token budgeting
|
||||
continuation_id = self.get_request_continuation_id(request)
|
||||
@@ -520,6 +542,7 @@ class BaseWorkflowMixin(ABC):
|
||||
"Workflow files for analysis",
|
||||
remaining_budget=remaining_tokens,
|
||||
arguments=arguments,
|
||||
model_context=self._model_context,
|
||||
)
|
||||
|
||||
# Store for use in expert analysis
|
||||
@@ -595,6 +618,20 @@ class BaseWorkflowMixin(ABC):
|
||||
# Validate request using tool-specific model
|
||||
request = self.get_workflow_request_model()(**arguments)
|
||||
|
||||
# Validate step field size (basic validation for workflow instructions)
|
||||
# If step is too large, user should use shorter instructions and put details in files
|
||||
step_content = request.step
|
||||
if step_content and len(step_content) > MCP_PROMPT_SIZE_LIMIT:
|
||||
from tools.models import ToolOutput
|
||||
|
||||
error_output = ToolOutput(
|
||||
status="resend_prompt",
|
||||
content="Step instructions are too long. Please use shorter instructions and provide detailed context via file paths instead.",
|
||||
content_type="text",
|
||||
metadata={"prompt_size": len(step_content), "limit": MCP_PROMPT_SIZE_LIMIT},
|
||||
)
|
||||
raise ValueError(f"MCP_SIZE_CHECK:{error_output.model_dump_json()}")
|
||||
|
||||
# Validate file paths for security (same as base tool)
|
||||
# Use try/except instead of hasattr as per coding standards
|
||||
try:
|
||||
@@ -612,6 +649,20 @@ class BaseWorkflowMixin(ABC):
|
||||
# validate_file_paths method not available - skip validation
|
||||
pass
|
||||
|
||||
# Try to validate model availability early for production scenarios
|
||||
# For tests, defer model validation to later to allow mocks to work
|
||||
try:
|
||||
model_name, model_context = self._resolve_model_context(arguments, request)
|
||||
# Store for later use
|
||||
self._current_model_name = model_name
|
||||
self._model_context = model_context
|
||||
except ValueError as e:
|
||||
# Model resolution failed - in production this would be an error,
|
||||
# but for tests we defer to allow mocks to handle model resolution
|
||||
logger.debug(f"Early model validation failed, deferring to later: {e}")
|
||||
self._current_model_name = None
|
||||
self._model_context = None
|
||||
|
||||
# Adjust total steps if needed
|
||||
if request.step_number > request.total_steps:
|
||||
request.total_steps = request.step_number
|
||||
@@ -1364,29 +1415,26 @@ class BaseWorkflowMixin(ABC):
|
||||
async def _call_expert_analysis(self, arguments: dict, request) -> dict:
|
||||
"""Call external model for expert analysis"""
|
||||
try:
|
||||
# Use the same model resolution logic as BaseTool
|
||||
model_context = arguments.get("_model_context")
|
||||
resolved_model_name = arguments.get("_resolved_model_name")
|
||||
|
||||
if model_context and resolved_model_name:
|
||||
self._model_context = model_context
|
||||
model_name = resolved_model_name
|
||||
else:
|
||||
# Fallback for direct calls - requires BaseTool methods
|
||||
# Model context should be resolved from early validation, but handle fallback for tests
|
||||
if not self._model_context:
|
||||
# Try to resolve model context for expert analysis (deferred from early validation)
|
||||
try:
|
||||
model_name, model_context = self._resolve_model_context(arguments, request)
|
||||
self._model_context = model_context
|
||||
self._current_model_name = model_name
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to resolve model context: {e}")
|
||||
# Use request model as fallback
|
||||
logger.error(f"Failed to resolve model context for expert analysis: {e}")
|
||||
# Use request model as fallback (preserves existing test behavior)
|
||||
model_name = self.get_request_model_name(request)
|
||||
from utils.model_context import ModelContext
|
||||
|
||||
model_context = ModelContext(model_name)
|
||||
self._model_context = model_context
|
||||
self._current_model_name = model_name
|
||||
else:
|
||||
model_name = self._current_model_name
|
||||
|
||||
self._current_model_name = model_name
|
||||
provider = self.get_model_provider(model_name)
|
||||
provider = self._model_context.provider
|
||||
|
||||
# Prepare expert analysis context
|
||||
expert_context = self.prepare_expert_analysis_context(self.consolidated_findings)
|
||||
@@ -1407,12 +1455,19 @@ class BaseWorkflowMixin(ABC):
|
||||
else:
|
||||
prompt = expert_context
|
||||
|
||||
# Validate temperature against model constraints
|
||||
validated_temperature, temp_warnings = self.get_validated_temperature(request, self._model_context)
|
||||
|
||||
# Log any temperature corrections
|
||||
for warning in temp_warnings:
|
||||
logger.warning(warning)
|
||||
|
||||
# Generate AI response - use request parameters if available
|
||||
model_response = provider.generate_content(
|
||||
prompt=prompt,
|
||||
model_name=model_name,
|
||||
system_prompt=system_prompt,
|
||||
temperature=self.get_request_temperature(request),
|
||||
temperature=validated_temperature,
|
||||
thinking_mode=self.get_request_thinking_mode(request),
|
||||
use_websearch=self.get_request_use_websearch(request),
|
||||
images=list(set(self.consolidated_findings.images)) if self.consolidated_findings.images else None,
|
||||
|
||||
Reference in New Issue
Block a user