fix: resolve Python 3.8/3.9 compatibility and linting issues
- Replace tuple[str, str] with Tuple[str, str] for Python 3.8 compatibility - Remove unused imports (Union, NotificationOptions) - Fix line length issues by breaking long lines - Add verbose_output field to analyze_code tool schema - Apply black and isort formatting - All tests pass and linting issues resolved This should fix the GitHub Actions failures on Python 3.8 and 3.9. 🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
292
gemini_server.py
292
gemini_server.py
@@ -4,25 +4,26 @@ Gemini MCP Server - Model Context Protocol server for Google Gemini
|
||||
Enhanced for large-scale code analysis with 1M token context window
|
||||
"""
|
||||
|
||||
import os
|
||||
import json
|
||||
import asyncio
|
||||
from typing import Optional, Dict, Any, List, Union
|
||||
import json
|
||||
import os
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Optional, Tuple
|
||||
|
||||
import google.generativeai as genai
|
||||
from mcp.server import Server
|
||||
from mcp.server.models import InitializationOptions
|
||||
from mcp.server import Server, NotificationOptions
|
||||
from mcp.server.stdio import stdio_server
|
||||
from mcp.types import TextContent, Tool
|
||||
from pydantic import BaseModel, Field
|
||||
import google.generativeai as genai
|
||||
|
||||
|
||||
# Default to Gemini 2.5 Pro Preview with maximum context
|
||||
DEFAULT_MODEL = "gemini-2.5-pro-preview-06-05"
|
||||
MAX_CONTEXT_TOKENS = 1000000 # 1M tokens
|
||||
|
||||
# Developer-focused system prompt for Claude Code usage
|
||||
DEVELOPER_SYSTEM_PROMPT = """You are an expert software developer assistant working alongside Claude Code. Your role is to extend Claude's capabilities when handling large codebases or complex analysis tasks.
|
||||
DEVELOPER_SYSTEM_PROMPT = """You are an expert software developer assistant working alongside Claude Code. \
|
||||
Your role is to extend Claude's capabilities when handling large codebases or complex analysis tasks.
|
||||
|
||||
Core competencies:
|
||||
- Deep understanding of software architecture and design patterns
|
||||
@@ -43,28 +44,55 @@ Your approach:
|
||||
- When reviewing code, prioritize critical issues first
|
||||
- Always validate your suggestions against best practices
|
||||
|
||||
Remember: You're augmenting Claude Code's capabilities, especially for tasks requiring extensive context or deep analysis that might exceed Claude's token limits."""
|
||||
Remember: You're augmenting Claude Code's capabilities, especially for tasks requiring \
|
||||
extensive context or deep analysis that might exceed Claude's token limits."""
|
||||
|
||||
|
||||
class GeminiChatRequest(BaseModel):
|
||||
"""Request model for Gemini chat"""
|
||||
|
||||
prompt: str = Field(..., description="The prompt to send to Gemini")
|
||||
system_prompt: Optional[str] = Field(None, description="Optional system prompt for context")
|
||||
max_tokens: Optional[int] = Field(8192, description="Maximum number of tokens in response")
|
||||
temperature: Optional[float] = Field(0.5, description="Temperature for response randomness (0-1, default 0.5 for balanced accuracy/creativity)")
|
||||
model: Optional[str] = Field(DEFAULT_MODEL, description=f"Model to use (defaults to {DEFAULT_MODEL})")
|
||||
system_prompt: Optional[str] = Field(
|
||||
None, description="Optional system prompt for context"
|
||||
)
|
||||
max_tokens: Optional[int] = Field(
|
||||
8192, description="Maximum number of tokens in response"
|
||||
)
|
||||
temperature: Optional[float] = Field(
|
||||
0.5,
|
||||
description="Temperature for response randomness (0-1, default 0.5 for balanced accuracy/creativity)",
|
||||
)
|
||||
model: Optional[str] = Field(
|
||||
DEFAULT_MODEL, description=f"Model to use (defaults to {DEFAULT_MODEL})"
|
||||
)
|
||||
|
||||
|
||||
class CodeAnalysisRequest(BaseModel):
|
||||
"""Request model for code analysis"""
|
||||
files: Optional[List[str]] = Field(None, description="List of file paths to analyze")
|
||||
|
||||
files: Optional[List[str]] = Field(
|
||||
None, description="List of file paths to analyze"
|
||||
)
|
||||
code: Optional[str] = Field(None, description="Direct code content to analyze")
|
||||
question: str = Field(..., description="Question or analysis request about the code")
|
||||
system_prompt: Optional[str] = Field(None, description="Optional system prompt for context")
|
||||
max_tokens: Optional[int] = Field(8192, description="Maximum number of tokens in response")
|
||||
temperature: Optional[float] = Field(0.2, description="Temperature for code analysis (0-1, default 0.2 for high accuracy)")
|
||||
model: Optional[str] = Field(DEFAULT_MODEL, description=f"Model to use (defaults to {DEFAULT_MODEL})")
|
||||
verbose_output: Optional[bool] = Field(False, description="Show file contents in terminal output")
|
||||
question: str = Field(
|
||||
..., description="Question or analysis request about the code"
|
||||
)
|
||||
system_prompt: Optional[str] = Field(
|
||||
None, description="Optional system prompt for context"
|
||||
)
|
||||
max_tokens: Optional[int] = Field(
|
||||
8192, description="Maximum number of tokens in response"
|
||||
)
|
||||
temperature: Optional[float] = Field(
|
||||
0.2,
|
||||
description="Temperature for code analysis (0-1, default 0.2 for high accuracy)",
|
||||
)
|
||||
model: Optional[str] = Field(
|
||||
DEFAULT_MODEL, description=f"Model to use (defaults to {DEFAULT_MODEL})"
|
||||
)
|
||||
verbose_output: Optional[bool] = Field(
|
||||
False, description="Show file contents in terminal output"
|
||||
)
|
||||
|
||||
|
||||
# Create the MCP server instance
|
||||
@@ -88,30 +116,32 @@ def read_file_content(file_path: str) -> str:
|
||||
return f"Error: File not found: {file_path}"
|
||||
if not path.is_file():
|
||||
return f"Error: Not a file: {file_path}"
|
||||
|
||||
|
||||
# Read the file
|
||||
with open(path, 'r', encoding='utf-8') as f:
|
||||
with open(path, "r", encoding="utf-8") as f:
|
||||
content = f.read()
|
||||
|
||||
|
||||
return f"=== File: {file_path} ===\n{content}\n"
|
||||
except Exception as e:
|
||||
return f"Error reading {file_path}: {str(e)}"
|
||||
|
||||
|
||||
def prepare_code_context(files: Optional[List[str]], code: Optional[str], verbose: bool = False) -> tuple[str, str]:
|
||||
def prepare_code_context(
|
||||
files: Optional[List[str]], code: Optional[str], verbose: bool = False
|
||||
) -> Tuple[str, str]:
|
||||
"""Prepare code context from files and/or direct code
|
||||
Returns: (context_for_gemini, summary_for_terminal)
|
||||
"""
|
||||
context_parts = []
|
||||
summary_parts = []
|
||||
|
||||
|
||||
# Add file contents
|
||||
if files:
|
||||
summary_parts.append(f"Analyzing {len(files)} file(s):")
|
||||
for file_path in files:
|
||||
content = read_file_content(file_path)
|
||||
context_parts.append(content)
|
||||
|
||||
|
||||
# For summary, just show file path and size
|
||||
path = Path(file_path)
|
||||
if path.exists() and path.is_file():
|
||||
@@ -119,15 +149,15 @@ def prepare_code_context(files: Optional[List[str]], code: Optional[str], verbos
|
||||
summary_parts.append(f" - {file_path} ({size:,} bytes)")
|
||||
else:
|
||||
summary_parts.append(f" - {file_path} (not found)")
|
||||
|
||||
|
||||
# Add direct code
|
||||
if code:
|
||||
context_parts.append("=== Direct Code ===\n" + code + "\n")
|
||||
summary_parts.append(f"Direct code provided ({len(code):,} characters)")
|
||||
|
||||
|
||||
full_context = "\n".join(context_parts)
|
||||
summary = "\n".join(summary_parts) if not verbose else full_context
|
||||
|
||||
|
||||
return full_context, summary
|
||||
|
||||
|
||||
@@ -143,32 +173,33 @@ async def handle_list_tools() -> List[Tool]:
|
||||
"properties": {
|
||||
"prompt": {
|
||||
"type": "string",
|
||||
"description": "The prompt to send to Gemini"
|
||||
"description": "The prompt to send to Gemini",
|
||||
},
|
||||
"system_prompt": {
|
||||
"type": "string",
|
||||
"description": "Optional system prompt for context"
|
||||
"description": "Optional system prompt for context",
|
||||
},
|
||||
"max_tokens": {
|
||||
"type": "integer",
|
||||
"description": "Maximum number of tokens in response",
|
||||
"default": 8192
|
||||
"default": 8192,
|
||||
},
|
||||
"temperature": {
|
||||
"type": "number",
|
||||
"description": "Temperature for response randomness (0-1, default 0.5 for balanced accuracy/creativity)",
|
||||
"description": "Temperature for response randomness (0-1, default 0.5 for "
|
||||
"balanced accuracy/creativity)",
|
||||
"default": 0.5,
|
||||
"minimum": 0,
|
||||
"maximum": 1
|
||||
"maximum": 1,
|
||||
},
|
||||
"model": {
|
||||
"type": "string",
|
||||
"description": f"Model to use (defaults to {DEFAULT_MODEL})",
|
||||
"default": DEFAULT_MODEL
|
||||
}
|
||||
"default": DEFAULT_MODEL,
|
||||
},
|
||||
},
|
||||
"required": ["prompt"]
|
||||
}
|
||||
"required": ["prompt"],
|
||||
},
|
||||
),
|
||||
Tool(
|
||||
name="analyze_code",
|
||||
@@ -179,60 +210,62 @@ async def handle_list_tools() -> List[Tool]:
|
||||
"files": {
|
||||
"type": "array",
|
||||
"items": {"type": "string"},
|
||||
"description": "List of file paths to analyze"
|
||||
"description": "List of file paths to analyze",
|
||||
},
|
||||
"code": {
|
||||
"type": "string",
|
||||
"description": "Direct code content to analyze (alternative to files)"
|
||||
"description": "Direct code content to analyze (alternative to files)",
|
||||
},
|
||||
"question": {
|
||||
"type": "string",
|
||||
"description": "Question or analysis request about the code"
|
||||
"description": "Question or analysis request about the code",
|
||||
},
|
||||
"system_prompt": {
|
||||
"type": "string",
|
||||
"description": "Optional system prompt for context"
|
||||
"description": "Optional system prompt for context",
|
||||
},
|
||||
"max_tokens": {
|
||||
"type": "integer",
|
||||
"description": "Maximum number of tokens in response",
|
||||
"default": 8192
|
||||
"default": 8192,
|
||||
},
|
||||
"temperature": {
|
||||
"type": "number",
|
||||
"description": "Temperature for code analysis (0-1, default 0.2 for high accuracy)",
|
||||
"default": 0.2,
|
||||
"minimum": 0,
|
||||
"maximum": 1
|
||||
"maximum": 1,
|
||||
},
|
||||
"model": {
|
||||
"type": "string",
|
||||
"description": f"Model to use (defaults to {DEFAULT_MODEL})",
|
||||
"default": DEFAULT_MODEL
|
||||
}
|
||||
"default": DEFAULT_MODEL,
|
||||
},
|
||||
"verbose_output": {
|
||||
"type": "boolean",
|
||||
"description": "Show file contents in terminal output",
|
||||
"default": False,
|
||||
},
|
||||
},
|
||||
"required": ["question"]
|
||||
}
|
||||
"required": ["question"],
|
||||
},
|
||||
),
|
||||
Tool(
|
||||
name="list_models",
|
||||
description="List available Gemini models",
|
||||
inputSchema={
|
||||
"type": "object",
|
||||
"properties": {}
|
||||
}
|
||||
)
|
||||
inputSchema={"type": "object", "properties": {}},
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
@server.call_tool()
|
||||
async def handle_call_tool(name: str, arguments: Dict[str, Any]) -> List[TextContent]:
|
||||
"""Handle tool execution requests"""
|
||||
|
||||
|
||||
if name == "chat":
|
||||
# Validate request
|
||||
request = GeminiChatRequest(**arguments)
|
||||
|
||||
|
||||
try:
|
||||
# Use the specified model with optimized settings
|
||||
model = genai.GenerativeModel(
|
||||
@@ -241,61 +274,68 @@ async def handle_call_tool(name: str, arguments: Dict[str, Any]) -> List[TextCon
|
||||
"temperature": request.temperature,
|
||||
"max_output_tokens": request.max_tokens,
|
||||
"candidate_count": 1,
|
||||
}
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
# Prepare the prompt with automatic developer context if no system prompt provided
|
||||
if request.system_prompt:
|
||||
full_prompt = f"{request.system_prompt}\n\n{request.prompt}"
|
||||
else:
|
||||
# Auto-inject developer system prompt for better Claude Code integration
|
||||
full_prompt = f"{DEVELOPER_SYSTEM_PROMPT}\n\n{request.prompt}"
|
||||
|
||||
|
||||
# Generate response
|
||||
response = model.generate_content(full_prompt)
|
||||
|
||||
|
||||
# Handle response based on finish reason
|
||||
if response.candidates and response.candidates[0].content.parts:
|
||||
text = response.candidates[0].content.parts[0].text
|
||||
else:
|
||||
# Handle safety filters or other issues
|
||||
finish_reason = response.candidates[0].finish_reason if response.candidates else "Unknown"
|
||||
finish_reason = (
|
||||
response.candidates[0].finish_reason
|
||||
if response.candidates
|
||||
else "Unknown"
|
||||
)
|
||||
text = f"Response blocked or incomplete. Finish reason: {finish_reason}"
|
||||
|
||||
return [TextContent(
|
||||
type="text",
|
||||
text=text
|
||||
)]
|
||||
|
||||
|
||||
return [TextContent(type="text", text=text)]
|
||||
|
||||
except Exception as e:
|
||||
return [TextContent(
|
||||
type="text",
|
||||
text=f"Error calling Gemini API: {str(e)}"
|
||||
)]
|
||||
|
||||
return [
|
||||
TextContent(type="text", text=f"Error calling Gemini API: {str(e)}")
|
||||
]
|
||||
|
||||
elif name == "analyze_code":
|
||||
# Validate request
|
||||
request = CodeAnalysisRequest(**arguments)
|
||||
|
||||
|
||||
# Check that we have either files or code
|
||||
if not request.files and not request.code:
|
||||
return [TextContent(
|
||||
type="text",
|
||||
text="Error: Must provide either 'files' or 'code' parameter"
|
||||
)]
|
||||
|
||||
return [
|
||||
TextContent(
|
||||
type="text",
|
||||
text="Error: Must provide either 'files' or 'code' parameter",
|
||||
)
|
||||
]
|
||||
|
||||
try:
|
||||
# Prepare code context
|
||||
code_context, summary = prepare_code_context(request.files, request.code, request.verbose_output)
|
||||
|
||||
code_context, summary = prepare_code_context(
|
||||
request.files, request.code, request.verbose_output
|
||||
)
|
||||
|
||||
# Count approximate tokens (rough estimate: 1 token ≈ 4 characters)
|
||||
estimated_tokens = len(code_context) // 4
|
||||
if estimated_tokens > MAX_CONTEXT_TOKENS:
|
||||
return [TextContent(
|
||||
type="text",
|
||||
text=f"Error: Code context too large (~{estimated_tokens:,} tokens). Maximum is {MAX_CONTEXT_TOKENS:,} tokens."
|
||||
)]
|
||||
|
||||
return [
|
||||
TextContent(
|
||||
type="text",
|
||||
text=f"Error: Code context too large (~{estimated_tokens:,} tokens). "
|
||||
f"Maximum is {MAX_CONTEXT_TOKENS:,} tokens.",
|
||||
)
|
||||
]
|
||||
|
||||
# Use the specified model with optimized settings for code analysis
|
||||
model = genai.GenerativeModel(
|
||||
model_name=request.model,
|
||||
@@ -303,90 +343,80 @@ async def handle_call_tool(name: str, arguments: Dict[str, Any]) -> List[TextCon
|
||||
"temperature": request.temperature,
|
||||
"max_output_tokens": request.max_tokens,
|
||||
"candidate_count": 1,
|
||||
}
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
# Prepare the full prompt with enhanced developer context
|
||||
system_prompt = request.system_prompt or DEVELOPER_SYSTEM_PROMPT
|
||||
full_prompt = f"{system_prompt}\n\nCode to analyze:\n\n{code_context}\n\nQuestion/Request: {request.question}"
|
||||
|
||||
full_prompt = (
|
||||
f"{system_prompt}\n\nCode to analyze:\n\n{code_context}\n\n"
|
||||
f"Question/Request: {request.question}"
|
||||
)
|
||||
|
||||
# Generate response
|
||||
response = model.generate_content(full_prompt)
|
||||
|
||||
|
||||
# Handle response
|
||||
if response.candidates and response.candidates[0].content.parts:
|
||||
text = response.candidates[0].content.parts[0].text
|
||||
else:
|
||||
finish_reason = response.candidates[0].finish_reason if response.candidates else "Unknown"
|
||||
finish_reason = (
|
||||
response.candidates[0].finish_reason
|
||||
if response.candidates
|
||||
else "Unknown"
|
||||
)
|
||||
text = f"Response blocked or incomplete. Finish reason: {finish_reason}"
|
||||
|
||||
|
||||
# Return response with summary if not verbose
|
||||
if not request.verbose_output and request.files:
|
||||
response_text = f"{summary}\n\nGemini's response:\n{text}"
|
||||
else:
|
||||
response_text = text
|
||||
|
||||
return [TextContent(
|
||||
type="text",
|
||||
text=response_text
|
||||
)]
|
||||
|
||||
|
||||
return [TextContent(type="text", text=response_text)]
|
||||
|
||||
except Exception as e:
|
||||
return [TextContent(
|
||||
type="text",
|
||||
text=f"Error analyzing code: {str(e)}"
|
||||
)]
|
||||
|
||||
return [TextContent(type="text", text=f"Error analyzing code: {str(e)}")]
|
||||
|
||||
elif name == "list_models":
|
||||
try:
|
||||
# List available models
|
||||
models = []
|
||||
for model in genai.list_models():
|
||||
if 'generateContent' in model.supported_generation_methods:
|
||||
models.append({
|
||||
"name": model.name,
|
||||
"display_name": model.display_name,
|
||||
"description": model.description,
|
||||
"is_default": model.name == DEFAULT_MODEL
|
||||
})
|
||||
|
||||
return [TextContent(
|
||||
type="text",
|
||||
text=json.dumps(models, indent=2)
|
||||
)]
|
||||
|
||||
if "generateContent" in model.supported_generation_methods:
|
||||
models.append(
|
||||
{
|
||||
"name": model.name,
|
||||
"display_name": model.display_name,
|
||||
"description": model.description,
|
||||
"is_default": model.name == DEFAULT_MODEL,
|
||||
}
|
||||
)
|
||||
|
||||
return [TextContent(type="text", text=json.dumps(models, indent=2))]
|
||||
|
||||
except Exception as e:
|
||||
return [TextContent(
|
||||
type="text",
|
||||
text=f"Error listing models: {str(e)}"
|
||||
)]
|
||||
|
||||
return [TextContent(type="text", text=f"Error listing models: {str(e)}")]
|
||||
|
||||
else:
|
||||
return [TextContent(
|
||||
type="text",
|
||||
text=f"Unknown tool: {name}"
|
||||
)]
|
||||
return [TextContent(type="text", text=f"Unknown tool: {name}")]
|
||||
|
||||
|
||||
async def main():
|
||||
"""Main entry point for the server"""
|
||||
# Configure Gemini API
|
||||
configure_gemini()
|
||||
|
||||
|
||||
# Run the server using stdio transport
|
||||
async with stdio_server() as (read_stream, write_stream):
|
||||
await server.run(
|
||||
read_stream,
|
||||
write_stream,
|
||||
InitializationOptions(
|
||||
server_name="gemini",
|
||||
server_version="2.0.0",
|
||||
capabilities={
|
||||
"tools": {}
|
||||
}
|
||||
)
|
||||
server_name="gemini", server_version="2.0.0", capabilities={"tools": {}}
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
asyncio.run(main())
|
||||
|
||||
Reference in New Issue
Block a user