fix: resolve Python 3.8/3.9 compatibility and linting issues

- Replace tuple[str, str] with Tuple[str, str] for Python 3.8 compatibility
- Remove unused imports (Union, NotificationOptions)
- Fix line length issues by breaking long lines
- Add verbose_output field to analyze_code tool schema
- Apply black and isort formatting
- All tests pass and linting issues resolved

This should fix the GitHub Actions failures on Python 3.8 and 3.9.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
Fahad
2025-06-08 20:54:03 +04:00
parent 22d387a858
commit c2c80dd828

View File

@@ -4,25 +4,26 @@ Gemini MCP Server - Model Context Protocol server for Google Gemini
Enhanced for large-scale code analysis with 1M token context window
"""
import os
import json
import asyncio
from typing import Optional, Dict, Any, List, Union
import json
import os
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple
import google.generativeai as genai
from mcp.server import Server
from mcp.server.models import InitializationOptions
from mcp.server import Server, NotificationOptions
from mcp.server.stdio import stdio_server
from mcp.types import TextContent, Tool
from pydantic import BaseModel, Field
import google.generativeai as genai
# Default to Gemini 2.5 Pro Preview with maximum context
DEFAULT_MODEL = "gemini-2.5-pro-preview-06-05"
MAX_CONTEXT_TOKENS = 1000000 # 1M tokens
# Developer-focused system prompt for Claude Code usage
DEVELOPER_SYSTEM_PROMPT = """You are an expert software developer assistant working alongside Claude Code. Your role is to extend Claude's capabilities when handling large codebases or complex analysis tasks.
DEVELOPER_SYSTEM_PROMPT = """You are an expert software developer assistant working alongside Claude Code. \
Your role is to extend Claude's capabilities when handling large codebases or complex analysis tasks.
Core competencies:
- Deep understanding of software architecture and design patterns
@@ -43,28 +44,55 @@ Your approach:
- When reviewing code, prioritize critical issues first
- Always validate your suggestions against best practices
Remember: You're augmenting Claude Code's capabilities, especially for tasks requiring extensive context or deep analysis that might exceed Claude's token limits."""
Remember: You're augmenting Claude Code's capabilities, especially for tasks requiring \
extensive context or deep analysis that might exceed Claude's token limits."""
class GeminiChatRequest(BaseModel):
"""Request model for Gemini chat"""
prompt: str = Field(..., description="The prompt to send to Gemini")
system_prompt: Optional[str] = Field(None, description="Optional system prompt for context")
max_tokens: Optional[int] = Field(8192, description="Maximum number of tokens in response")
temperature: Optional[float] = Field(0.5, description="Temperature for response randomness (0-1, default 0.5 for balanced accuracy/creativity)")
model: Optional[str] = Field(DEFAULT_MODEL, description=f"Model to use (defaults to {DEFAULT_MODEL})")
system_prompt: Optional[str] = Field(
None, description="Optional system prompt for context"
)
max_tokens: Optional[int] = Field(
8192, description="Maximum number of tokens in response"
)
temperature: Optional[float] = Field(
0.5,
description="Temperature for response randomness (0-1, default 0.5 for balanced accuracy/creativity)",
)
model: Optional[str] = Field(
DEFAULT_MODEL, description=f"Model to use (defaults to {DEFAULT_MODEL})"
)
class CodeAnalysisRequest(BaseModel):
"""Request model for code analysis"""
files: Optional[List[str]] = Field(None, description="List of file paths to analyze")
files: Optional[List[str]] = Field(
None, description="List of file paths to analyze"
)
code: Optional[str] = Field(None, description="Direct code content to analyze")
question: str = Field(..., description="Question or analysis request about the code")
system_prompt: Optional[str] = Field(None, description="Optional system prompt for context")
max_tokens: Optional[int] = Field(8192, description="Maximum number of tokens in response")
temperature: Optional[float] = Field(0.2, description="Temperature for code analysis (0-1, default 0.2 for high accuracy)")
model: Optional[str] = Field(DEFAULT_MODEL, description=f"Model to use (defaults to {DEFAULT_MODEL})")
verbose_output: Optional[bool] = Field(False, description="Show file contents in terminal output")
question: str = Field(
..., description="Question or analysis request about the code"
)
system_prompt: Optional[str] = Field(
None, description="Optional system prompt for context"
)
max_tokens: Optional[int] = Field(
8192, description="Maximum number of tokens in response"
)
temperature: Optional[float] = Field(
0.2,
description="Temperature for code analysis (0-1, default 0.2 for high accuracy)",
)
model: Optional[str] = Field(
DEFAULT_MODEL, description=f"Model to use (defaults to {DEFAULT_MODEL})"
)
verbose_output: Optional[bool] = Field(
False, description="Show file contents in terminal output"
)
# Create the MCP server instance
@@ -90,7 +118,7 @@ def read_file_content(file_path: str) -> str:
return f"Error: Not a file: {file_path}"
# Read the file
with open(path, 'r', encoding='utf-8') as f:
with open(path, "r", encoding="utf-8") as f:
content = f.read()
return f"=== File: {file_path} ===\n{content}\n"
@@ -98,7 +126,9 @@ def read_file_content(file_path: str) -> str:
return f"Error reading {file_path}: {str(e)}"
def prepare_code_context(files: Optional[List[str]], code: Optional[str], verbose: bool = False) -> tuple[str, str]:
def prepare_code_context(
files: Optional[List[str]], code: Optional[str], verbose: bool = False
) -> Tuple[str, str]:
"""Prepare code context from files and/or direct code
Returns: (context_for_gemini, summary_for_terminal)
"""
@@ -143,32 +173,33 @@ async def handle_list_tools() -> List[Tool]:
"properties": {
"prompt": {
"type": "string",
"description": "The prompt to send to Gemini"
"description": "The prompt to send to Gemini",
},
"system_prompt": {
"type": "string",
"description": "Optional system prompt for context"
"description": "Optional system prompt for context",
},
"max_tokens": {
"type": "integer",
"description": "Maximum number of tokens in response",
"default": 8192
"default": 8192,
},
"temperature": {
"type": "number",
"description": "Temperature for response randomness (0-1, default 0.5 for balanced accuracy/creativity)",
"description": "Temperature for response randomness (0-1, default 0.5 for "
"balanced accuracy/creativity)",
"default": 0.5,
"minimum": 0,
"maximum": 1
"maximum": 1,
},
"model": {
"type": "string",
"description": f"Model to use (defaults to {DEFAULT_MODEL})",
"default": DEFAULT_MODEL
}
"default": DEFAULT_MODEL,
},
},
"required": ["prompt"]
}
"required": ["prompt"],
},
),
Tool(
name="analyze_code",
@@ -179,49 +210,51 @@ async def handle_list_tools() -> List[Tool]:
"files": {
"type": "array",
"items": {"type": "string"},
"description": "List of file paths to analyze"
"description": "List of file paths to analyze",
},
"code": {
"type": "string",
"description": "Direct code content to analyze (alternative to files)"
"description": "Direct code content to analyze (alternative to files)",
},
"question": {
"type": "string",
"description": "Question or analysis request about the code"
"description": "Question or analysis request about the code",
},
"system_prompt": {
"type": "string",
"description": "Optional system prompt for context"
"description": "Optional system prompt for context",
},
"max_tokens": {
"type": "integer",
"description": "Maximum number of tokens in response",
"default": 8192
"default": 8192,
},
"temperature": {
"type": "number",
"description": "Temperature for code analysis (0-1, default 0.2 for high accuracy)",
"default": 0.2,
"minimum": 0,
"maximum": 1
"maximum": 1,
},
"model": {
"type": "string",
"description": f"Model to use (defaults to {DEFAULT_MODEL})",
"default": DEFAULT_MODEL
}
"default": DEFAULT_MODEL,
},
"verbose_output": {
"type": "boolean",
"description": "Show file contents in terminal output",
"default": False,
},
},
"required": ["question"]
}
"required": ["question"],
},
),
Tool(
name="list_models",
description="List available Gemini models",
inputSchema={
"type": "object",
"properties": {}
}
)
inputSchema={"type": "object", "properties": {}},
),
]
@@ -241,7 +274,7 @@ async def handle_call_tool(name: str, arguments: Dict[str, Any]) -> List[TextCon
"temperature": request.temperature,
"max_output_tokens": request.max_tokens,
"candidate_count": 1,
}
},
)
# Prepare the prompt with automatic developer context if no system prompt provided
@@ -259,19 +292,19 @@ async def handle_call_tool(name: str, arguments: Dict[str, Any]) -> List[TextCon
text = response.candidates[0].content.parts[0].text
else:
# Handle safety filters or other issues
finish_reason = response.candidates[0].finish_reason if response.candidates else "Unknown"
finish_reason = (
response.candidates[0].finish_reason
if response.candidates
else "Unknown"
)
text = f"Response blocked or incomplete. Finish reason: {finish_reason}"
return [TextContent(
type="text",
text=text
)]
return [TextContent(type="text", text=text)]
except Exception as e:
return [TextContent(
type="text",
text=f"Error calling Gemini API: {str(e)}"
)]
return [
TextContent(type="text", text=f"Error calling Gemini API: {str(e)}")
]
elif name == "analyze_code":
# Validate request
@@ -279,22 +312,29 @@ async def handle_call_tool(name: str, arguments: Dict[str, Any]) -> List[TextCon
# Check that we have either files or code
if not request.files and not request.code:
return [TextContent(
type="text",
text="Error: Must provide either 'files' or 'code' parameter"
)]
return [
TextContent(
type="text",
text="Error: Must provide either 'files' or 'code' parameter",
)
]
try:
# Prepare code context
code_context, summary = prepare_code_context(request.files, request.code, request.verbose_output)
code_context, summary = prepare_code_context(
request.files, request.code, request.verbose_output
)
# Count approximate tokens (rough estimate: 1 token ≈ 4 characters)
estimated_tokens = len(code_context) // 4
if estimated_tokens > MAX_CONTEXT_TOKENS:
return [TextContent(
type="text",
text=f"Error: Code context too large (~{estimated_tokens:,} tokens). Maximum is {MAX_CONTEXT_TOKENS:,} tokens."
)]
return [
TextContent(
type="text",
text=f"Error: Code context too large (~{estimated_tokens:,} tokens). "
f"Maximum is {MAX_CONTEXT_TOKENS:,} tokens.",
)
]
# Use the specified model with optimized settings for code analysis
model = genai.GenerativeModel(
@@ -303,12 +343,15 @@ async def handle_call_tool(name: str, arguments: Dict[str, Any]) -> List[TextCon
"temperature": request.temperature,
"max_output_tokens": request.max_tokens,
"candidate_count": 1,
}
},
)
# Prepare the full prompt with enhanced developer context
system_prompt = request.system_prompt or DEVELOPER_SYSTEM_PROMPT
full_prompt = f"{system_prompt}\n\nCode to analyze:\n\n{code_context}\n\nQuestion/Request: {request.question}"
full_prompt = (
f"{system_prompt}\n\nCode to analyze:\n\n{code_context}\n\n"
f"Question/Request: {request.question}"
)
# Generate response
response = model.generate_content(full_prompt)
@@ -317,7 +360,11 @@ async def handle_call_tool(name: str, arguments: Dict[str, Any]) -> List[TextCon
if response.candidates and response.candidates[0].content.parts:
text = response.candidates[0].content.parts[0].text
else:
finish_reason = response.candidates[0].finish_reason if response.candidates else "Unknown"
finish_reason = (
response.candidates[0].finish_reason
if response.candidates
else "Unknown"
)
text = f"Response blocked or incomplete. Finish reason: {finish_reason}"
# Return response with summary if not verbose
@@ -326,46 +373,33 @@ async def handle_call_tool(name: str, arguments: Dict[str, Any]) -> List[TextCon
else:
response_text = text
return [TextContent(
type="text",
text=response_text
)]
return [TextContent(type="text", text=response_text)]
except Exception as e:
return [TextContent(
type="text",
text=f"Error analyzing code: {str(e)}"
)]
return [TextContent(type="text", text=f"Error analyzing code: {str(e)}")]
elif name == "list_models":
try:
# List available models
models = []
for model in genai.list_models():
if 'generateContent' in model.supported_generation_methods:
models.append({
"name": model.name,
"display_name": model.display_name,
"description": model.description,
"is_default": model.name == DEFAULT_MODEL
})
if "generateContent" in model.supported_generation_methods:
models.append(
{
"name": model.name,
"display_name": model.display_name,
"description": model.description,
"is_default": model.name == DEFAULT_MODEL,
}
)
return [TextContent(
type="text",
text=json.dumps(models, indent=2)
)]
return [TextContent(type="text", text=json.dumps(models, indent=2))]
except Exception as e:
return [TextContent(
type="text",
text=f"Error listing models: {str(e)}"
)]
return [TextContent(type="text", text=f"Error listing models: {str(e)}")]
else:
return [TextContent(
type="text",
text=f"Unknown tool: {name}"
)]
return [TextContent(type="text", text=f"Unknown tool: {name}")]
async def main():
@@ -379,12 +413,8 @@ async def main():
read_stream,
write_stream,
InitializationOptions(
server_name="gemini",
server_version="2.0.0",
capabilities={
"tools": {}
}
)
server_name="gemini", server_version="2.0.0", capabilities={"tools": {}}
),
)