refactor: removed method from provider, should use model capabilities instead

refactor: cleanup temperature factory method
This commit is contained in:
Fahad
2025-10-02 11:08:56 +04:00
parent 9c11ecc4bf
commit a254ff2220
25 changed files with 105 additions and 224 deletions

View File

@@ -15,7 +15,7 @@ Each provider:
**Option A: Full Provider (`ModelProvider`)**
- For APIs with unique features or custom authentication
- Complete control over API calls and response handling
- Required methods: `generate_content()`, `count_tokens()`, `get_capabilities()`, `validate_model_name()`, `supports_thinking_mode()`, `get_provider_type()`
- Required methods: `generate_content()`, `count_tokens()`, `get_capabilities()`, `validate_model_name()`, `get_provider_type()`
**Option B: OpenAI-Compatible (`OpenAICompatibleProvider`)**
- For APIs that follow OpenAI's chat completion format
@@ -130,10 +130,6 @@ class ExampleModelProvider(ModelProvider):
def validate_model_name(self, model_name: str) -> bool:
resolved_name = self._resolve_model_name(model_name)
return resolved_name in self.MODEL_CAPABILITIES
def supports_thinking_mode(self, model_name: str) -> bool:
capabilities = self.get_capabilities(model_name)
return capabilities.supports_extended_thinking
```
#### Option B: OpenAI-Compatible Provider (Simplified)

View File

@@ -109,11 +109,6 @@ class ModelProvider(ABC):
constraint_desc = capabilities.temperature_constraint.get_description()
raise ValueError(f"Temperature {temperature} is invalid for model {model_name}. {constraint_desc}")
@abstractmethod
def supports_thinking_mode(self, model_name: str) -> bool:
"""Check if the model supports extended thinking mode."""
pass
def get_model_configurations(self) -> dict[str, ModelCapabilities]:
"""Get model configurations for this provider.

View File

@@ -284,24 +284,6 @@ class CustomProvider(OpenAICompatibleProvider):
**kwargs,
)
def supports_thinking_mode(self, model_name: str) -> bool:
"""Check if the model supports extended thinking mode.
Args:
model_name: Model to check
Returns:
True if model supports thinking mode, False otherwise
"""
# Check if model is in registry
config = self._registry.resolve(model_name) if self._registry else None
if config and config.is_custom:
# Trust the config from custom_models.json
return config.supports_extended_thinking
# Default to False for unknown models
return False
def get_model_configurations(self) -> dict[str, ModelCapabilities]:
"""Get model configurations from the registry.

View File

@@ -7,12 +7,7 @@ import time
from typing import Optional
from .openai_compatible import OpenAICompatibleProvider
from .shared import (
ModelCapabilities,
ModelResponse,
ProviderType,
create_temperature_constraint,
)
from .shared import ModelCapabilities, ModelResponse, ProviderType, TemperatureConstraint
logger = logging.getLogger(__name__)
@@ -48,7 +43,7 @@ class DIALModelProvider(OpenAICompatibleProvider):
supports_images=True,
max_image_size_mb=20.0,
supports_temperature=False, # O3 models don't accept temperature
temperature_constraint=create_temperature_constraint("fixed"),
temperature_constraint=TemperatureConstraint.create("fixed"),
description="OpenAI O3 via DIAL - Strong reasoning model",
aliases=["o3"],
),
@@ -66,7 +61,7 @@ class DIALModelProvider(OpenAICompatibleProvider):
supports_images=True,
max_image_size_mb=20.0,
supports_temperature=False, # O4 models don't accept temperature
temperature_constraint=create_temperature_constraint("fixed"),
temperature_constraint=TemperatureConstraint.create("fixed"),
description="OpenAI O4-mini via DIAL - Fast reasoning model",
aliases=["o4-mini"],
),
@@ -84,7 +79,7 @@ class DIALModelProvider(OpenAICompatibleProvider):
supports_images=True,
max_image_size_mb=5.0,
supports_temperature=True,
temperature_constraint=create_temperature_constraint("range"),
temperature_constraint=TemperatureConstraint.create("range"),
description="Claude Sonnet 4.1 via DIAL - Balanced performance",
aliases=["sonnet-4.1", "sonnet-4"],
),
@@ -102,7 +97,7 @@ class DIALModelProvider(OpenAICompatibleProvider):
supports_images=True,
max_image_size_mb=5.0,
supports_temperature=True,
temperature_constraint=create_temperature_constraint("range"),
temperature_constraint=TemperatureConstraint.create("range"),
description="Claude Sonnet 4.1 with thinking mode via DIAL",
aliases=["sonnet-4.1-thinking", "sonnet-4-thinking"],
),
@@ -120,7 +115,7 @@ class DIALModelProvider(OpenAICompatibleProvider):
supports_images=True,
max_image_size_mb=5.0,
supports_temperature=True,
temperature_constraint=create_temperature_constraint("range"),
temperature_constraint=TemperatureConstraint.create("range"),
description="Claude Opus 4.1 via DIAL - Most capable Claude model",
aliases=["opus-4.1", "opus-4"],
),
@@ -138,7 +133,7 @@ class DIALModelProvider(OpenAICompatibleProvider):
supports_images=True,
max_image_size_mb=5.0,
supports_temperature=True,
temperature_constraint=create_temperature_constraint("range"),
temperature_constraint=TemperatureConstraint.create("range"),
description="Claude Opus 4.1 with thinking mode via DIAL",
aliases=["opus-4.1-thinking", "opus-4-thinking"],
),
@@ -156,7 +151,7 @@ class DIALModelProvider(OpenAICompatibleProvider):
supports_images=True,
max_image_size_mb=20.0,
supports_temperature=True,
temperature_constraint=create_temperature_constraint("range"),
temperature_constraint=TemperatureConstraint.create("range"),
description="Gemini 2.5 Pro with Google Search via DIAL",
aliases=["gemini-2.5-pro-search"],
),
@@ -174,7 +169,7 @@ class DIALModelProvider(OpenAICompatibleProvider):
supports_images=True,
max_image_size_mb=20.0,
supports_temperature=True,
temperature_constraint=create_temperature_constraint("range"),
temperature_constraint=TemperatureConstraint.create("range"),
description="Gemini 2.5 Pro via DIAL - Deep reasoning",
aliases=["gemini-2.5-pro"],
),
@@ -192,7 +187,7 @@ class DIALModelProvider(OpenAICompatibleProvider):
supports_images=True,
max_image_size_mb=20.0,
supports_temperature=True,
temperature_constraint=create_temperature_constraint("range"),
temperature_constraint=TemperatureConstraint.create("range"),
description="Gemini 2.5 Flash via DIAL - Ultra-fast",
aliases=["gemini-2.5-flash"],
),

View File

@@ -12,12 +12,7 @@ from google import genai
from google.genai import types
from .base import ModelProvider
from .shared import (
ModelCapabilities,
ModelResponse,
ProviderType,
create_temperature_constraint,
)
from .shared import ModelCapabilities, ModelResponse, ProviderType, TemperatureConstraint
logger = logging.getLogger(__name__)
@@ -46,7 +41,7 @@ class GeminiModelProvider(ModelProvider):
supports_images=True, # Vision capability
max_image_size_mb=32.0, # Higher limit for Pro model
supports_temperature=True,
temperature_constraint=create_temperature_constraint("range"),
temperature_constraint=TemperatureConstraint.create("range"),
max_thinking_tokens=32768, # Max thinking tokens for Pro model
description="Deep reasoning + thinking mode (1M context) - Complex problems, architecture, deep analysis",
aliases=["pro", "gemini pro", "gemini-pro"],
@@ -65,7 +60,7 @@ class GeminiModelProvider(ModelProvider):
supports_images=True, # Vision capability
max_image_size_mb=20.0, # Conservative 20MB limit for reliability
supports_temperature=True,
temperature_constraint=create_temperature_constraint("range"),
temperature_constraint=TemperatureConstraint.create("range"),
max_thinking_tokens=24576, # Same as 2.5 flash for consistency
description="Gemini 2.0 Flash (1M context) - Latest fast model with experimental thinking, supports audio/video input",
aliases=["flash-2.0", "flash2"],
@@ -84,7 +79,7 @@ class GeminiModelProvider(ModelProvider):
supports_images=False, # Does not support images
max_image_size_mb=0.0, # No image support
supports_temperature=True,
temperature_constraint=create_temperature_constraint("range"),
temperature_constraint=TemperatureConstraint.create("range"),
description="Gemini 2.0 Flash Lite (1M context) - Lightweight fast model, text-only",
aliases=["flashlite", "flash-lite"],
),
@@ -102,7 +97,7 @@ class GeminiModelProvider(ModelProvider):
supports_images=True, # Vision capability
max_image_size_mb=20.0, # Conservative 20MB limit for reliability
supports_temperature=True,
temperature_constraint=create_temperature_constraint("range"),
temperature_constraint=TemperatureConstraint.create("range"),
max_thinking_tokens=24576, # Flash 2.5 thinking budget limit
description="Ultra-fast (1M context) - Quick analysis, simple queries, rapid iterations",
aliases=["flash", "flash2.5"],
@@ -397,11 +392,6 @@ class GeminiModelProvider(ModelProvider):
return True
def supports_thinking_mode(self, model_name: str) -> bool:
"""Check if the model supports extended thinking mode."""
capabilities = self.get_capabilities(model_name)
return capabilities.supports_extended_thinking
def get_thinking_budget(self, model_name: str, thinking_mode: str) -> int:
"""Get actual thinking token budget for a model and thinking mode."""
resolved_name = self._resolve_model_name(model_name)

View File

@@ -734,13 +734,6 @@ class OpenAICompatibleProvider(ModelProvider):
"""
pass
def supports_thinking_mode(self, model_name: str) -> bool:
"""Check if the model supports extended thinking mode.
Default is False for OpenAI-compatible providers.
"""
return False
def _is_error_retryable(self, error: Exception) -> bool:
"""Determine if an error should be retried based on structured error codes.

View File

@@ -7,12 +7,7 @@ if TYPE_CHECKING:
from tools.models import ToolModelCategory
from .openai_compatible import OpenAICompatibleProvider
from .shared import (
ModelCapabilities,
ModelResponse,
ProviderType,
create_temperature_constraint,
)
from .shared import ModelCapabilities, ModelResponse, ProviderType, TemperatureConstraint
logger = logging.getLogger(__name__)
@@ -41,7 +36,7 @@ class OpenAIModelProvider(OpenAICompatibleProvider):
supports_images=True, # GPT-5 supports vision
max_image_size_mb=20.0, # 20MB per OpenAI docs
supports_temperature=True, # Regular models accept temperature parameter
temperature_constraint=create_temperature_constraint("fixed"),
temperature_constraint=TemperatureConstraint.create("fixed"),
description="GPT-5 (400K context, 128K output) - Advanced model with reasoning support",
aliases=["gpt5"],
),
@@ -59,7 +54,7 @@ class OpenAIModelProvider(OpenAICompatibleProvider):
supports_images=True, # GPT-5-mini supports vision
max_image_size_mb=20.0, # 20MB per OpenAI docs
supports_temperature=True,
temperature_constraint=create_temperature_constraint("fixed"),
temperature_constraint=TemperatureConstraint.create("fixed"),
description="GPT-5-mini (400K context, 128K output) - Efficient variant with reasoning support",
aliases=["gpt5-mini", "gpt5mini", "mini"],
),
@@ -77,7 +72,7 @@ class OpenAIModelProvider(OpenAICompatibleProvider):
supports_images=True,
max_image_size_mb=20.0,
supports_temperature=True,
temperature_constraint=create_temperature_constraint("fixed"),
temperature_constraint=TemperatureConstraint.create("fixed"),
description="GPT-5 nano (400K context) - Fastest, cheapest version of GPT-5 for summarization and classification tasks",
aliases=["gpt5nano", "gpt5-nano", "nano"],
),
@@ -95,7 +90,7 @@ class OpenAIModelProvider(OpenAICompatibleProvider):
supports_images=True, # O3 models support vision
max_image_size_mb=20.0, # 20MB per OpenAI docs
supports_temperature=False, # O3 models don't accept temperature parameter
temperature_constraint=create_temperature_constraint("fixed"),
temperature_constraint=TemperatureConstraint.create("fixed"),
description="Strong reasoning (200K context) - Logical problems, code generation, systematic analysis",
aliases=[],
),
@@ -113,7 +108,7 @@ class OpenAIModelProvider(OpenAICompatibleProvider):
supports_images=True, # O3 models support vision
max_image_size_mb=20.0, # 20MB per OpenAI docs
supports_temperature=False, # O3 models don't accept temperature parameter
temperature_constraint=create_temperature_constraint("fixed"),
temperature_constraint=TemperatureConstraint.create("fixed"),
description="Fast O3 variant (200K context) - Balanced performance/speed, moderate complexity",
aliases=["o3mini"],
),
@@ -131,7 +126,7 @@ class OpenAIModelProvider(OpenAICompatibleProvider):
supports_images=True, # O3 models support vision
max_image_size_mb=20.0, # 20MB per OpenAI docs
supports_temperature=False, # O3 models don't accept temperature parameter
temperature_constraint=create_temperature_constraint("fixed"),
temperature_constraint=TemperatureConstraint.create("fixed"),
description="Professional-grade reasoning (200K context) - EXTREMELY EXPENSIVE: Only for the most complex problems requiring universe-scale complexity analysis OR when the user explicitly asks for this model. Use sparingly for critical architectural decisions or exceptionally complex debugging that other models cannot handle.",
aliases=["o3pro"],
),
@@ -149,7 +144,7 @@ class OpenAIModelProvider(OpenAICompatibleProvider):
supports_images=True, # O4 models support vision
max_image_size_mb=20.0, # 20MB per OpenAI docs
supports_temperature=False, # O4 models don't accept temperature parameter
temperature_constraint=create_temperature_constraint("fixed"),
temperature_constraint=TemperatureConstraint.create("fixed"),
description="Latest reasoning model (200K context) - Optimized for shorter contexts, rapid reasoning",
aliases=["o4mini"],
),
@@ -167,7 +162,7 @@ class OpenAIModelProvider(OpenAICompatibleProvider):
supports_images=True, # GPT-4.1 supports vision
max_image_size_mb=20.0, # 20MB per OpenAI docs
supports_temperature=True, # Regular models accept temperature parameter
temperature_constraint=create_temperature_constraint("range"),
temperature_constraint=TemperatureConstraint.create("range"),
description="GPT-4.1 (1M context) - Advanced reasoning model with large context window",
aliases=["gpt4.1"],
),
@@ -303,13 +298,6 @@ class OpenAIModelProvider(OpenAICompatibleProvider):
**kwargs,
)
def supports_thinking_mode(self, model_name: str) -> bool:
"""Check if the model supports extended thinking mode."""
try:
return self.get_capabilities(model_name).supports_extended_thinking
except ValueError:
return False
def get_preferred_model(self, category: "ToolModelCategory", allowed_models: list[str]) -> Optional[str]:
"""Get OpenAI's preferred model for a given category from allowed models.

View File

@@ -204,20 +204,6 @@ class OpenRouterProvider(OpenAICompatibleProvider):
**kwargs,
)
def supports_thinking_mode(self, model_name: str) -> bool:
"""Check if the model supports extended thinking mode.
Currently, no models via OpenRouter support extended thinking.
This may change as new models become available.
Args:
model_name: Model to check
Returns:
False (no OpenRouter models currently support thinking mode)
"""
return False
def list_models(
self,
*,

View File

@@ -12,7 +12,7 @@ from utils.file_utils import read_json_file
from .shared import (
ModelCapabilities,
ProviderType,
create_temperature_constraint,
TemperatureConstraint,
)
@@ -178,7 +178,7 @@ class OpenRouterModelRegistry:
# Create ModelCapabilities directly from JSON data
# Handle temperature_constraint conversion
temp_constraint_str = model_data.get("temperature_constraint")
temp_constraint = create_temperature_constraint(temp_constraint_str or "range")
temp_constraint = TemperatureConstraint.create(temp_constraint_str or "range")
# Set provider-specific defaults based on is_custom flag
is_custom = model_data.get("is_custom", False)

View File

@@ -8,7 +8,6 @@ from .temperature import (
FixedTemperatureConstraint,
RangeTemperatureConstraint,
TemperatureConstraint,
create_temperature_constraint,
)
__all__ = [
@@ -19,5 +18,4 @@ __all__ = [
"FixedTemperatureConstraint",
"RangeTemperatureConstraint",
"DiscreteTemperatureConstraint",
"create_temperature_constraint",
]

View File

@@ -8,7 +8,6 @@ __all__ = [
"FixedTemperatureConstraint",
"RangeTemperatureConstraint",
"DiscreteTemperatureConstraint",
"create_temperature_constraint",
]
# Common heuristics for determining temperature support when explicit
@@ -102,7 +101,7 @@ class TemperatureConstraint(ABC):
"""
if constraint_hint:
constraint = create_temperature_constraint(constraint_hint)
constraint = TemperatureConstraint.create(constraint_hint)
supports_temperature = constraint_hint != "fixed"
reason = f"constraint hint '{constraint_hint}'"
return supports_temperature, constraint, reason
@@ -115,6 +114,19 @@ class TemperatureConstraint(ABC):
return supports_temperature, constraint, reason
@staticmethod
def create(constraint_type: str) -> "TemperatureConstraint":
"""Factory that yields the appropriate constraint for a configuration hint."""
if constraint_type == "fixed":
# Fixed temperature models (O3/O4) only support temperature=1.0
return FixedTemperatureConstraint(1.0)
if constraint_type == "discrete":
# For models with specific allowed values - using common OpenAI values as default
return DiscreteTemperatureConstraint([0.0, 0.3, 0.7, 1.0, 1.5, 2.0], 0.3)
# Default range constraint (for "range" or None)
return RangeTemperatureConstraint(0.0, 2.0, 0.3)
class FixedTemperatureConstraint(TemperatureConstraint):
"""Constraint for models that enforce an exact temperature (for example O3)."""
@@ -174,22 +186,3 @@ class DiscreteTemperatureConstraint(TemperatureConstraint):
def get_default(self) -> float:
return self.default_temp
def create_temperature_constraint(constraint_type: str) -> TemperatureConstraint:
"""Factory that yields the appropriate constraint for a model configuration.
The JSON configuration stored in ``conf/custom_models.json`` references this
helper via human-readable strings. Providers feed those values into this
function so that runtime logic can rely on strongly typed constraint
objects.
"""
if constraint_type == "fixed":
# Fixed temperature models (O3/O4) only support temperature=1.0
return FixedTemperatureConstraint(1.0)
if constraint_type == "discrete":
# For models with specific allowed values - using common OpenAI values as default
return DiscreteTemperatureConstraint([0.0, 0.3, 0.7, 1.0, 1.5, 2.0], 0.3)
# Default range constraint (for "range" or None)
return RangeTemperatureConstraint(0.0, 2.0, 0.3)

View File

@@ -7,12 +7,7 @@ if TYPE_CHECKING:
from tools.models import ToolModelCategory
from .openai_compatible import OpenAICompatibleProvider
from .shared import (
ModelCapabilities,
ModelResponse,
ProviderType,
create_temperature_constraint,
)
from .shared import ModelCapabilities, ModelResponse, ProviderType, TemperatureConstraint
logger = logging.getLogger(__name__)
@@ -42,7 +37,7 @@ class XAIModelProvider(OpenAICompatibleProvider):
supports_images=True, # Multimodal capabilities
max_image_size_mb=20.0, # Standard image size limit
supports_temperature=True,
temperature_constraint=create_temperature_constraint("range"),
temperature_constraint=TemperatureConstraint.create("range"),
description="GROK-4 (256K context) - Frontier multimodal reasoning model with advanced capabilities",
aliases=["grok", "grok4", "grok-4"],
),
@@ -60,7 +55,7 @@ class XAIModelProvider(OpenAICompatibleProvider):
supports_images=False, # Assuming GROK is text-only for now
max_image_size_mb=0.0,
supports_temperature=True,
temperature_constraint=create_temperature_constraint("range"),
temperature_constraint=TemperatureConstraint.create("range"),
description="GROK-3 (131K context) - Advanced reasoning model from X.AI, excellent for complex analysis",
aliases=["grok3"],
),
@@ -78,7 +73,7 @@ class XAIModelProvider(OpenAICompatibleProvider):
supports_images=False, # Assuming GROK is text-only for now
max_image_size_mb=0.0,
supports_temperature=True,
temperature_constraint=create_temperature_constraint("range"),
temperature_constraint=TemperatureConstraint.create("range"),
description="GROK-3 Fast (131K context) - Higher performance variant, faster processing but more expensive",
aliases=["grok3fast", "grokfast", "grok3-fast"],
),
@@ -153,14 +148,6 @@ class XAIModelProvider(OpenAICompatibleProvider):
**kwargs,
)
def supports_thinking_mode(self, model_name: str) -> bool:
"""Check if the model supports extended thinking mode."""
resolved_name = self._resolve_model_name(model_name)
capabilities = self.MODEL_CAPABILITIES.get(resolved_name)
if capabilities:
return capabilities.supports_extended_thinking
return False
def get_preferred_model(self, category: "ToolModelCategory", allowed_models: list[str]) -> Optional[str]:
"""Get XAI's preferred model for a given category from allowed models.

View File

@@ -25,7 +25,6 @@ def create_mock_provider(model_name="gemini-2.5-flash", context_window=1_048_576
mock_provider.get_capabilities.return_value = mock_capabilities
mock_provider.get_provider_type.return_value = ProviderType.GOOGLE
mock_provider.supports_thinking_mode.return_value = False
mock_provider.validate_model_name.return_value = True
# Set up generate_content response

View File

@@ -40,7 +40,6 @@ class TestDynamicContextRequests:
mock_provider = create_mock_provider()
mock_provider.get_provider_type.return_value = Mock(value="google")
mock_provider.supports_thinking_mode.return_value = False
mock_provider.generate_content.return_value = Mock(
content=clarification_json, usage={}, model_name="gemini-2.5-flash", metadata={}
)
@@ -122,7 +121,6 @@ class TestDynamicContextRequests:
mock_provider = create_mock_provider()
mock_provider.get_provider_type.return_value = Mock(value="google")
mock_provider.supports_thinking_mode.return_value = False
mock_provider.generate_content.return_value = Mock(
content=malformed_json, usage={}, model_name="gemini-2.5-flash", metadata={}
)
@@ -181,7 +179,6 @@ class TestDynamicContextRequests:
mock_provider = create_mock_provider()
mock_provider.get_provider_type.return_value = Mock(value="google")
mock_provider.supports_thinking_mode.return_value = False
mock_provider.generate_content.return_value = Mock(
content=clarification_json, usage={}, model_name="gemini-2.5-flash", metadata={}
)
@@ -347,7 +344,6 @@ class TestCollaborationWorkflow:
mock_provider = create_mock_provider()
mock_provider.get_provider_type.return_value = Mock(value="google")
mock_provider.supports_thinking_mode.return_value = False
mock_provider.generate_content.return_value = Mock(
content=clarification_json, usage={}, model_name="gemini-2.5-flash", metadata={}
)
@@ -414,7 +410,6 @@ class TestCollaborationWorkflow:
mock_provider = create_mock_provider()
mock_provider.get_provider_type.return_value = Mock(value="google")
mock_provider.supports_thinking_mode.return_value = False
mock_provider.generate_content.return_value = Mock(
content=clarification_json, usage={}, model_name="gemini-2.5-flash", metadata={}
)

View File

@@ -86,7 +86,7 @@ class TestCustomOpenAITemperatureParameterFix:
mock_registry_class.return_value = mock_registry
# Mock get_model_config to return our test model
from providers.shared import ModelCapabilities, ProviderType, create_temperature_constraint
from providers.shared import ModelCapabilities, ProviderType, TemperatureConstraint
test_capabilities = ModelCapabilities(
provider=ProviderType.OPENAI,
@@ -102,7 +102,7 @@ class TestCustomOpenAITemperatureParameterFix:
supports_images=True,
max_image_size_mb=20.0,
supports_temperature=False, # This is the key setting
temperature_constraint=create_temperature_constraint("fixed"),
temperature_constraint=TemperatureConstraint.create("fixed"),
description="Custom OpenAI GPT-5 test model",
)
@@ -170,7 +170,7 @@ class TestCustomOpenAITemperatureParameterFix:
mock_registry_class.return_value = mock_registry
# Mock get_model_config to return a model that supports temperature
from providers.shared import ModelCapabilities, ProviderType, create_temperature_constraint
from providers.shared import ModelCapabilities, ProviderType, TemperatureConstraint
test_capabilities = ModelCapabilities(
provider=ProviderType.OPENAI,
@@ -186,7 +186,7 @@ class TestCustomOpenAITemperatureParameterFix:
supports_images=True,
max_image_size_mb=20.0,
supports_temperature=True, # This model DOES support temperature
temperature_constraint=create_temperature_constraint("range"),
temperature_constraint=TemperatureConstraint.create("range"),
description="Custom OpenAI GPT-4 test model",
)
@@ -227,7 +227,7 @@ class TestCustomOpenAITemperatureParameterFix:
mock_registry = Mock()
mock_registry_class.return_value = mock_registry
from providers.shared import ModelCapabilities, ProviderType, create_temperature_constraint
from providers.shared import ModelCapabilities, ProviderType, TemperatureConstraint
test_capabilities = ModelCapabilities(
provider=ProviderType.OPENAI,
@@ -243,7 +243,7 @@ class TestCustomOpenAITemperatureParameterFix:
supports_images=True,
max_image_size_mb=20.0,
supports_temperature=False,
temperature_constraint=create_temperature_constraint("fixed"),
temperature_constraint=TemperatureConstraint.create("fixed"),
description="Custom OpenAI O3 test model",
)

View File

@@ -99,11 +99,11 @@ class TestCustomProvider:
assert resolved_local == "llama3.2"
def test_no_thinking_mode_support(self):
"""Test CustomProvider doesn't support thinking mode."""
"""Custom provider generic capabilities default to no thinking mode."""
provider = CustomProvider(api_key="test-key", base_url="http://localhost:11434/v1")
assert not provider.supports_thinking_mode("llama3.2")
assert not provider.supports_thinking_mode("any-model")
assert not provider.get_capabilities("llama3.2").supports_extended_thinking
assert not provider.get_capabilities("any-model").supports_extended_thinking
@patch("providers.custom.OpenAICompatibleProvider.generate_content")
def test_generate_content_with_alias_resolution(self, mock_generate):

View File

@@ -43,10 +43,6 @@ class MinimalTestProvider(ModelProvider):
"""Not needed for image validation tests."""
raise NotImplementedError("Not needed for image validation tests")
def supports_thinking_mode(self, model_name: str) -> bool:
"""Not needed for image validation tests."""
raise NotImplementedError("Not needed for image validation tests")
class TestImageValidation:
"""Test suite for image validation functionality."""

View File

@@ -41,7 +41,7 @@ def test_issue_245_custom_openai_temperature_ignored():
mock_registry = Mock()
mock_registry_class.return_value = mock_registry
from providers.shared import ModelCapabilities, ProviderType, create_temperature_constraint
from providers.shared import ModelCapabilities, ProviderType, TemperatureConstraint
# This is what the user configured in their custom_models.json
custom_config = ModelCapabilities(
@@ -56,7 +56,7 @@ def test_issue_245_custom_openai_temperature_ignored():
supports_streaming=True,
supports_function_calling=True,
supports_temperature=False, # User set this to false!
temperature_constraint=create_temperature_constraint("fixed"),
temperature_constraint=TemperatureConstraint.create("fixed"),
supports_images=True,
max_image_size_mb=20.0,
description="Custom OpenAI GPT-5",

View File

@@ -244,7 +244,7 @@ class TestLargePromptHandling:
with patch.object(tool, "get_model_provider") as mock_get_provider:
mock_provider = MagicMock()
mock_provider.get_provider_type.return_value = MagicMock(value="google")
mock_provider.supports_thinking_mode.return_value = False
mock_provider.get_capabilities.return_value = MagicMock(supports_extended_thinking=False)
mock_provider.generate_content.return_value = MagicMock(
content="Success",
usage={"input_tokens": 10, "output_tokens": 20, "total_tokens": 30},
@@ -287,7 +287,7 @@ class TestLargePromptHandling:
with patch.object(tool, "get_model_provider") as mock_get_provider:
mock_provider = MagicMock()
mock_provider.get_provider_type.return_value = MagicMock(value="google")
mock_provider.supports_thinking_mode.return_value = False
mock_provider.get_capabilities.return_value = MagicMock(supports_extended_thinking=False)
mock_provider.generate_content.return_value = MagicMock(
content="Response to the large prompt",
usage={"input_tokens": 12000, "output_tokens": 10, "total_tokens": 12010},
@@ -319,7 +319,7 @@ class TestLargePromptHandling:
with patch.object(tool, "get_model_provider") as mock_get_provider:
mock_provider = MagicMock()
mock_provider.get_provider_type.return_value = MagicMock(value="google")
mock_provider.supports_thinking_mode.return_value = False
mock_provider.get_capabilities.return_value = MagicMock(supports_extended_thinking=False)
mock_provider.generate_content.return_value = MagicMock(
content="Success",
usage={"input_tokens": 10, "output_tokens": 20, "total_tokens": 30},

View File

@@ -252,33 +252,31 @@ class TestOpenAIProvider:
call_kwargs = mock_client.chat.completions.create.call_args[1]
assert call_kwargs["model"] == "o3-mini" # Should be unchanged
def test_supports_thinking_mode(self):
"""Test thinking mode support based on model capabilities."""
def test_extended_thinking_capabilities(self):
"""Thinking-mode support should be reflected via ModelCapabilities."""
provider = OpenAIModelProvider("test-key")
# GPT-5 models support thinking mode (reasoning tokens) - all variants
assert provider.supports_thinking_mode("gpt-5") is True
assert provider.supports_thinking_mode("gpt-5-mini") is True
assert provider.supports_thinking_mode("gpt-5-nano") is True # Now included
supported_aliases = [
"gpt-5",
"gpt-5-mini",
"gpt-5-nano",
"gpt5",
"gpt5-mini",
"gpt5mini",
"gpt5-nano",
"gpt5nano",
"nano",
"mini", # resolves to gpt-5-mini
]
for alias in supported_aliases:
assert provider.get_capabilities(alias).supports_extended_thinking is True
# Test GPT-5 aliases
assert provider.supports_thinking_mode("gpt5") is True
assert provider.supports_thinking_mode("gpt5-mini") is True
assert provider.supports_thinking_mode("gpt5mini") is True
assert provider.supports_thinking_mode("gpt5-nano") is True
assert provider.supports_thinking_mode("gpt5nano") is True
assert provider.supports_thinking_mode("nano") is True # New alias for gpt-5-nano
unsupported_aliases = ["o3", "o3-mini", "o4-mini"]
for alias in unsupported_aliases:
assert provider.get_capabilities(alias).supports_extended_thinking is False
# O3/O4 models don't support thinking mode
assert provider.supports_thinking_mode("o3") is False
assert provider.supports_thinking_mode("o3-mini") is False
assert provider.supports_thinking_mode("o4-mini") is False
assert (
provider.supports_thinking_mode("mini") is True
) # "mini" now resolves to gpt-5-mini which supports thinking
# Test invalid model name
assert provider.supports_thinking_mode("invalid-model") is False
# Invalid models should not validate, treat as unsupported
assert not provider.validate_model_name("invalid-model")
@patch("providers.openai_compatible.OpenAI")
def test_o3_pro_routes_to_responses_endpoint(self, mock_openai_class):

View File

@@ -213,7 +213,7 @@ class TestOpenRouterModelRegistry:
def test_model_with_all_capabilities(self):
"""Test model with all capability flags."""
from providers.shared import create_temperature_constraint
from providers.shared import TemperatureConstraint
caps = ModelCapabilities(
provider=ProviderType.OPENROUTER,
@@ -228,7 +228,7 @@ class TestOpenRouterModelRegistry:
supports_function_calling=True,
supports_json_mode=True,
description="Fully featured test model",
temperature_constraint=create_temperature_constraint("range"),
temperature_constraint=TemperatureConstraint.create("range"),
)
assert caps.context_window == 128000
assert caps.supports_extended_thinking

View File

@@ -120,13 +120,6 @@ class TestGeminiProvider:
capabilities = provider.get_capabilities("flash")
assert capabilities.model_name == "gemini-2.5-flash"
def test_supports_thinking_mode(self):
"""Test thinking mode support detection"""
provider = GeminiModelProvider(api_key="test-key")
assert provider.supports_thinking_mode("gemini-2.5-flash")
assert provider.supports_thinking_mode("gemini-2.5-pro")
@patch("google.genai.Client")
def test_generate_content(self, mock_client_class):
"""Test content generation"""
@@ -219,12 +212,10 @@ class TestOpenAIProvider:
assert not provider.validate_model_name("gpt-4o")
assert not provider.validate_model_name("invalid-model")
def test_no_thinking_mode_support(self):
"""Test that no OpenAI models support thinking mode"""
def test_openai_models_do_not_support_extended_thinking(self):
"""OpenAI catalogue exposes extended thinking capability via ModelCapabilities."""
provider = OpenAIModelProvider(api_key="test-key")
assert not provider.supports_thinking_mode("o3")
assert not provider.supports_thinking_mode("o3mini")
assert not provider.supports_thinking_mode("o3-mini")
assert not provider.supports_thinking_mode("o4-mini")
assert not provider.supports_thinking_mode("o4-mini")
aliases = ["o3", "o3mini", "o3-mini", "o4-mini", "o4mini"]
for alias in aliases:
assert not provider.get_capabilities(alias).supports_extended_thinking

View File

@@ -75,7 +75,7 @@ class TestWorkflowToolsUTF8(unittest.IsolatedAsyncioTestCase):
# Mock provider with more complete setup (same as codereview test)
mock_provider = Mock()
mock_provider.get_provider_type.return_value = Mock(value="test")
mock_provider.supports_thinking_mode.return_value = False
mock_provider.get_capabilities.return_value = Mock(supports_extended_thinking=False)
mock_provider.generate_content = AsyncMock(
return_value=Mock(
content=json.dumps(
@@ -93,6 +93,7 @@ class TestWorkflowToolsUTF8(unittest.IsolatedAsyncioTestCase):
# Use the same provider for both contexts
mock_get_provider.return_value = mock_provider
mock_context_instance.provider = mock_provider
mock_context_instance.capabilities = Mock(supports_extended_thinking=False)
mock_model_context.return_value = mock_context_instance
# Test the tool
@@ -131,7 +132,7 @@ class TestWorkflowToolsUTF8(unittest.IsolatedAsyncioTestCase):
# Mock with analysis in French
mock_provider = Mock()
mock_provider.get_provider_type.return_value = Mock(value="test")
mock_provider.supports_thinking_mode.return_value = False
mock_provider.get_capabilities.return_value = Mock(supports_extended_thinking=False)
mock_provider.generate_content = AsyncMock(
return_value=Mock(
content=json.dumps(
@@ -204,7 +205,7 @@ class TestWorkflowToolsUTF8(unittest.IsolatedAsyncioTestCase):
# Mock provider
mock_provider = Mock()
mock_provider.get_provider_type.return_value = Mock(value="test")
mock_provider.supports_thinking_mode.return_value = False
mock_provider.get_capabilities.return_value = Mock(supports_extended_thinking=False)
mock_provider.generate_content = AsyncMock(
return_value=Mock(
content=json.dumps(

View File

@@ -144,21 +144,17 @@ class TestXAIProvider:
with pytest.raises(ValueError, match="Unsupported X.AI model"):
provider.get_capabilities("invalid-model")
def test_thinking_mode_support(self):
"""Test thinking mode support for X.AI models."""
def test_extended_thinking_flags(self):
"""X.AI capabilities should expose extended thinking support correctly."""
provider = XAIModelProvider("test-key")
# Grok-4 supports thinking mode
assert provider.supports_thinking_mode("grok-4") is True
assert provider.supports_thinking_mode("grok") is True # Resolves to grok-4
thinking_aliases = ["grok-4", "grok", "grok4"]
for alias in thinking_aliases:
assert provider.get_capabilities(alias).supports_extended_thinking is True
# Grok-3 models don't support thinking mode
assert not provider.supports_thinking_mode("grok-3")
assert not provider.supports_thinking_mode("grok-3-fast")
assert provider.supports_thinking_mode("grok-4") # grok-4 supports thinking mode
assert provider.supports_thinking_mode("grok") # resolves to grok-4
assert provider.supports_thinking_mode("grok4") # resolves to grok-4
assert not provider.supports_thinking_mode("grokfast")
non_thinking_aliases = ["grok-3", "grok-3-fast", "grokfast"]
for alias in non_thinking_aliases:
assert provider.get_capabilities(alias).supports_extended_thinking is False
def test_provider_type(self):
"""Test provider type identification."""

View File

@@ -422,13 +422,17 @@ class SimpleTool(BaseTool):
estimated_tokens = estimate_tokens(prompt)
logger.debug(f"Prompt length: {len(prompt)} characters (~{estimated_tokens:,} tokens)")
# Resolve model capabilities for feature gating
capabilities = self._model_context.capabilities
supports_thinking = capabilities.supports_extended_thinking
# Generate content with provider abstraction
model_response = provider.generate_content(
prompt=prompt,
model_name=self._current_model_name,
system_prompt=system_prompt,
temperature=temperature,
thinking_mode=thinking_mode if provider.supports_thinking_mode(self._current_model_name) else None,
thinking_mode=thinking_mode if supports_thinking else None,
images=images if images else None,
)
@@ -485,9 +489,7 @@ class SimpleTool(BaseTool):
model_name=self._current_model_name,
system_prompt=system_prompt,
temperature=temperature,
thinking_mode=(
thinking_mode if provider.supports_thinking_mode(self._current_model_name) else None
),
thinking_mode=thinking_mode if supports_thinking else None,
images=images if images else None,
)