New tests for O3-pro
Improved prompts for shorthand input
This commit is contained in:
Fahad
2025-06-16 20:00:08 +04:00
parent 5f69ad4049
commit 9b98df650b
8 changed files with 400 additions and 50 deletions

View File

@@ -32,12 +32,14 @@ class OpenAIModelProvider(OpenAICompatibleProvider):
"supports_images": True, # O3 models support vision
"max_image_size_mb": 20.0, # 20MB per OpenAI docs
},
"o3-pro": {
"o3-pro-2025-06-10": {
"context_window": 200_000, # 200K tokens
"supports_extended_thinking": False,
"supports_images": True, # O3 models support vision
"max_image_size_mb": 20.0, # 20MB per OpenAI docs
},
# Aliases
"o3-pro": "o3-pro-2025-06-10",
"o4-mini": {
"context_window": 200_000, # 200K tokens
"supports_extended_thinking": False,
@@ -89,7 +91,7 @@ class OpenAIModelProvider(OpenAICompatibleProvider):
config = self.SUPPORTED_MODELS[resolved_name]
# Define temperature constraints per model
if resolved_name in ["o3", "o3-mini", "o3-pro", "o4-mini", "o4-mini-high"]:
if resolved_name in ["o3", "o3-mini", "o3-pro", "o3-pro-2025-06-10", "o4-mini", "o4-mini-high"]:
# O3 and O4 reasoning models only support temperature=1.0
temp_constraint = FixedTemperatureConstraint(1.0)
else:

View File

@@ -224,6 +224,138 @@ class OpenAICompatibleProvider(ModelProvider):
return self._client
def _generate_with_responses_endpoint(
self,
model_name: str,
messages: list,
temperature: float,
max_output_tokens: Optional[int] = None,
**kwargs,
) -> ModelResponse:
"""Generate content using the /v1/responses endpoint for o3-pro via OpenAI library."""
# Convert messages to the correct format for responses endpoint
input_messages = []
for message in messages:
role = message.get("role", "")
content = message.get("content", "")
if role == "system":
# System messages can be treated as user messages for o3-pro
input_messages.append(
{"role": "user", "content": [{"type": "input_text", "text": f"System: {content}"}]}
)
elif role == "user":
input_messages.append({"role": "user", "content": [{"type": "input_text", "text": content}]})
elif role == "assistant":
input_messages.append({"role": "assistant", "content": [{"type": "output_text", "text": content}]})
# Prepare completion parameters for responses endpoint
completion_params = {
"model": model_name,
"input": input_messages,
"text": {"format": {"type": "text"}},
"reasoning": {"effort": "medium", "summary": "auto"},
"tools": [],
"store": True,
}
# Temperature is not in the documented parameters for responses endpoint
# but we'll try to add it in case it's supported
# Add max tokens if specified
if max_output_tokens:
completion_params["max_tokens"] = max_output_tokens
# Add any additional OpenAI-specific parameters
for key, value in kwargs.items():
if key in ["top_p", "frequency_penalty", "presence_penalty", "seed", "stop"]:
completion_params[key] = value
# Retry logic with progressive delays
max_retries = 4
retry_delays = [1, 3, 5, 8]
last_exception = None
for attempt in range(max_retries):
try:
# Use OpenAI client's responses endpoint
response = self.client.responses.create(**completion_params)
# Extract content and usage from responses endpoint format
# The response format is different for responses endpoint
content = ""
if hasattr(response, "output") and response.output:
if hasattr(response.output, "content") and response.output.content:
# Look for output_text in content
for content_item in response.output.content:
if hasattr(content_item, "type") and content_item.type == "output_text":
content = content_item.text
break
elif hasattr(response.output, "text"):
content = response.output.text
# Try to extract usage information
usage = None
if hasattr(response, "usage"):
usage = self._extract_usage(response)
elif hasattr(response, "input_tokens") and hasattr(response, "output_tokens"):
usage = {
"input_tokens": getattr(response, "input_tokens", 0),
"output_tokens": getattr(response, "output_tokens", 0),
"total_tokens": getattr(response, "input_tokens", 0) + getattr(response, "output_tokens", 0),
}
return ModelResponse(
content=content,
usage=usage,
model_name=model_name,
friendly_name=self.FRIENDLY_NAME,
provider=self.get_provider_type(),
metadata={
"model": getattr(response, "model", model_name),
"id": getattr(response, "id", ""),
"created": getattr(response, "created_at", 0),
"endpoint": "responses",
},
)
except Exception as e:
last_exception = e
# Check if this is a retryable error
error_str = str(e).lower()
is_retryable = any(
term in error_str
for term in [
"timeout",
"connection",
"network",
"temporary",
"unavailable",
"retry",
"429",
"500",
"502",
"503",
"504",
]
)
if is_retryable and attempt < max_retries - 1:
delay = retry_delays[attempt]
logging.warning(
f"Retryable error for o3-pro responses endpoint, attempt {attempt + 1}/{max_retries}: {str(e)}. Retrying in {delay}s..."
)
time.sleep(delay)
else:
break
# If we get here, all retries failed
error_msg = f"o3-pro responses endpoint error after {max_retries} attempts: {str(last_exception)}"
logging.error(error_msg)
raise RuntimeError(error_msg) from last_exception
def generate_content(
self,
prompt: str,
@@ -301,6 +433,22 @@ class OpenAICompatibleProvider(ModelProvider):
if key in ["top_p", "frequency_penalty", "presence_penalty", "seed", "stop", "stream"]:
completion_params[key] = value
# Check if this is o3-pro and needs the responses endpoint
resolved_model = model_name
if hasattr(self, "_resolve_model_name"):
resolved_model = self._resolve_model_name(model_name)
if resolved_model == "o3-pro-2025-06-10":
# This model requires the /v1/responses endpoint
# If it fails, we should not fall back to chat/completions
return self._generate_with_responses_endpoint(
model_name=resolved_model,
messages=messages,
temperature=temperature,
max_output_tokens=max_output_tokens,
**kwargs,
)
# Retry logic with progressive delays
max_retries = 4 # Total of 4 attempts
retry_delays = [1, 3, 5, 8] # Progressive delays: 1s, 3s, 5s, 8s