Vision support via images / pdfs etc that can be passed on to other models as part of analysis, additional context etc.
Image processing pipeline added OpenAI GPT-4.1 support Chat tool prompt enhancement Lint and code quality improvements
This commit is contained in:
@@ -1,5 +1,6 @@
|
||||
"""Base class for OpenAI-compatible API providers."""
|
||||
|
||||
import base64
|
||||
import ipaddress
|
||||
import logging
|
||||
import os
|
||||
@@ -229,6 +230,7 @@ class OpenAICompatibleProvider(ModelProvider):
|
||||
system_prompt: Optional[str] = None,
|
||||
temperature: float = 0.7,
|
||||
max_output_tokens: Optional[int] = None,
|
||||
images: Optional[list[str]] = None,
|
||||
**kwargs,
|
||||
) -> ModelResponse:
|
||||
"""Generate content using the OpenAI-compatible API.
|
||||
@@ -255,7 +257,32 @@ class OpenAICompatibleProvider(ModelProvider):
|
||||
messages = []
|
||||
if system_prompt:
|
||||
messages.append({"role": "system", "content": system_prompt})
|
||||
messages.append({"role": "user", "content": prompt})
|
||||
|
||||
# Prepare user message with text and potentially images
|
||||
user_content = []
|
||||
user_content.append({"type": "text", "text": prompt})
|
||||
|
||||
# Add images if provided and model supports vision
|
||||
if images and self._supports_vision(model_name):
|
||||
for image_path in images:
|
||||
try:
|
||||
image_content = self._process_image(image_path)
|
||||
if image_content:
|
||||
user_content.append(image_content)
|
||||
except Exception as e:
|
||||
logging.warning(f"Failed to process image {image_path}: {e}")
|
||||
# Continue with other images and text
|
||||
continue
|
||||
elif images and not self._supports_vision(model_name):
|
||||
logging.warning(f"Model {model_name} does not support images, ignoring {len(images)} image(s)")
|
||||
|
||||
# Add user message
|
||||
if len(user_content) == 1:
|
||||
# Only text content, use simple string format for compatibility
|
||||
messages.append({"role": "user", "content": prompt})
|
||||
else:
|
||||
# Text + images, use content array format
|
||||
messages.append({"role": "user", "content": user_content})
|
||||
|
||||
# Prepare completion parameters
|
||||
completion_params = {
|
||||
@@ -424,3 +451,66 @@ class OpenAICompatibleProvider(ModelProvider):
|
||||
Default is False for OpenAI-compatible providers.
|
||||
"""
|
||||
return False
|
||||
|
||||
def _supports_vision(self, model_name: str) -> bool:
|
||||
"""Check if the model supports vision (image processing).
|
||||
|
||||
Default implementation for OpenAI-compatible providers.
|
||||
Subclasses should override with specific model support.
|
||||
"""
|
||||
# Common vision-capable models - only include models that actually support images
|
||||
vision_models = {
|
||||
"gpt-4o",
|
||||
"gpt-4o-mini",
|
||||
"gpt-4-turbo",
|
||||
"gpt-4-vision-preview",
|
||||
"gpt-4.1-2025-04-14", # GPT-4.1 supports vision
|
||||
"o3",
|
||||
"o3-mini",
|
||||
"o3-pro",
|
||||
"o4-mini",
|
||||
"o4-mini-high",
|
||||
# Note: Claude models would be handled by a separate provider
|
||||
}
|
||||
supports = model_name.lower() in vision_models
|
||||
logging.debug(f"Model '{model_name}' vision support: {supports}")
|
||||
return supports
|
||||
|
||||
def _process_image(self, image_path: str) -> Optional[dict]:
|
||||
"""Process an image for OpenAI-compatible API."""
|
||||
try:
|
||||
if image_path.startswith("...
|
||||
return {"type": "image_url", "image_url": {"url": image_path}}
|
||||
else:
|
||||
# Handle file path - translate for Docker environment
|
||||
from utils.file_utils import translate_path_for_environment
|
||||
|
||||
translated_path = translate_path_for_environment(image_path)
|
||||
logging.debug(f"Translated image path from '{image_path}' to '{translated_path}'")
|
||||
|
||||
if not os.path.exists(translated_path):
|
||||
logging.warning(f"Image file not found: {translated_path} (original: {image_path})")
|
||||
return None
|
||||
|
||||
# Use translated path for all subsequent operations
|
||||
image_path = translated_path
|
||||
|
||||
# Detect MIME type from file extension using centralized mappings
|
||||
from utils.file_types import get_image_mime_type
|
||||
|
||||
ext = os.path.splitext(image_path)[1].lower()
|
||||
mime_type = get_image_mime_type(ext)
|
||||
logging.debug(f"Processing image '{image_path}' with extension '{ext}' as MIME type '{mime_type}'")
|
||||
|
||||
# Read and encode the image
|
||||
with open(image_path, "rb") as f:
|
||||
image_data = base64.b64encode(f.read()).decode()
|
||||
|
||||
# Create data URL for OpenAI API
|
||||
data_url = f"data:{mime_type};base64,{image_data}"
|
||||
|
||||
return {"type": "image_url", "image_url": {"url": data_url}}
|
||||
except Exception as e:
|
||||
logging.error(f"Error processing image {image_path}: {e}")
|
||||
return None
|
||||
|
||||
Reference in New Issue
Block a user