Vision support via images / pdfs etc that can be passed on to other models as part of analysis, additional context etc.
Image processing pipeline added OpenAI GPT-4.1 support Chat tool prompt enhancement Lint and code quality improvements
This commit is contained in:
@@ -1,6 +1,8 @@
|
||||
"""Gemini model provider implementation."""
|
||||
|
||||
import base64
|
||||
import logging
|
||||
import os
|
||||
import time
|
||||
from typing import Optional
|
||||
|
||||
@@ -21,11 +23,15 @@ class GeminiModelProvider(ModelProvider):
|
||||
"context_window": 1_048_576, # 1M tokens
|
||||
"supports_extended_thinking": True,
|
||||
"max_thinking_tokens": 24576, # Flash 2.5 thinking budget limit
|
||||
"supports_images": True, # Vision capability
|
||||
"max_image_size_mb": 20.0, # Conservative 20MB limit for reliability
|
||||
},
|
||||
"gemini-2.5-pro-preview-06-05": {
|
||||
"context_window": 1_048_576, # 1M tokens
|
||||
"supports_extended_thinking": True,
|
||||
"max_thinking_tokens": 32768, # Pro 2.5 thinking budget limit
|
||||
"supports_images": True, # Vision capability
|
||||
"max_image_size_mb": 32.0, # Higher limit for Pro model
|
||||
},
|
||||
# Shorthands
|
||||
"flash": "gemini-2.5-flash-preview-05-20",
|
||||
@@ -84,6 +90,8 @@ class GeminiModelProvider(ModelProvider):
|
||||
supports_system_prompts=True,
|
||||
supports_streaming=True,
|
||||
supports_function_calling=True,
|
||||
supports_images=config.get("supports_images", False),
|
||||
max_image_size_mb=config.get("max_image_size_mb", 0.0),
|
||||
temperature_constraint=temp_constraint,
|
||||
)
|
||||
|
||||
@@ -95,6 +103,7 @@ class GeminiModelProvider(ModelProvider):
|
||||
temperature: float = 0.7,
|
||||
max_output_tokens: Optional[int] = None,
|
||||
thinking_mode: str = "medium",
|
||||
images: Optional[list[str]] = None,
|
||||
**kwargs,
|
||||
) -> ModelResponse:
|
||||
"""Generate content using Gemini model."""
|
||||
@@ -102,12 +111,34 @@ class GeminiModelProvider(ModelProvider):
|
||||
resolved_name = self._resolve_model_name(model_name)
|
||||
self.validate_parameters(resolved_name, temperature)
|
||||
|
||||
# Combine system prompt with user prompt if provided
|
||||
# Prepare content parts (text and potentially images)
|
||||
parts = []
|
||||
|
||||
# Add system and user prompts as text
|
||||
if system_prompt:
|
||||
full_prompt = f"{system_prompt}\n\n{prompt}"
|
||||
else:
|
||||
full_prompt = prompt
|
||||
|
||||
parts.append({"text": full_prompt})
|
||||
|
||||
# Add images if provided and model supports vision
|
||||
if images and self._supports_vision(resolved_name):
|
||||
for image_path in images:
|
||||
try:
|
||||
image_part = self._process_image(image_path)
|
||||
if image_part:
|
||||
parts.append(image_part)
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to process image {image_path}: {e}")
|
||||
# Continue with other images and text
|
||||
continue
|
||||
elif images and not self._supports_vision(resolved_name):
|
||||
logger.warning(f"Model {resolved_name} does not support images, ignoring {len(images)} image(s)")
|
||||
|
||||
# Create contents structure
|
||||
contents = [{"parts": parts}]
|
||||
|
||||
# Prepare generation config
|
||||
generation_config = types.GenerateContentConfig(
|
||||
temperature=temperature,
|
||||
@@ -139,7 +170,7 @@ class GeminiModelProvider(ModelProvider):
|
||||
# Generate content
|
||||
response = self.client.models.generate_content(
|
||||
model=resolved_name,
|
||||
contents=full_prompt,
|
||||
contents=contents,
|
||||
config=generation_config,
|
||||
)
|
||||
|
||||
@@ -274,3 +305,51 @@ class GeminiModelProvider(ModelProvider):
|
||||
usage["total_tokens"] = usage["input_tokens"] + usage["output_tokens"]
|
||||
|
||||
return usage
|
||||
|
||||
def _supports_vision(self, model_name: str) -> bool:
|
||||
"""Check if the model supports vision (image processing)."""
|
||||
# Gemini 2.5 models support vision
|
||||
vision_models = {
|
||||
"gemini-2.5-flash-preview-05-20",
|
||||
"gemini-2.5-pro-preview-06-05",
|
||||
"gemini-2.0-flash",
|
||||
"gemini-1.5-pro",
|
||||
"gemini-1.5-flash",
|
||||
}
|
||||
return model_name in vision_models
|
||||
|
||||
def _process_image(self, image_path: str) -> Optional[dict]:
|
||||
"""Process an image for Gemini API."""
|
||||
try:
|
||||
if image_path.startswith("...
|
||||
header, data = image_path.split(",", 1)
|
||||
mime_type = header.split(";")[0].split(":")[1]
|
||||
return {"inline_data": {"mime_type": mime_type, "data": data}}
|
||||
else:
|
||||
# Handle file path - translate for Docker environment
|
||||
from utils.file_types import get_image_mime_type
|
||||
from utils.file_utils import translate_path_for_environment
|
||||
|
||||
translated_path = translate_path_for_environment(image_path)
|
||||
logger.debug(f"Translated image path from '{image_path}' to '{translated_path}'")
|
||||
|
||||
if not os.path.exists(translated_path):
|
||||
logger.warning(f"Image file not found: {translated_path} (original: {image_path})")
|
||||
return None
|
||||
|
||||
# Use translated path for all subsequent operations
|
||||
image_path = translated_path
|
||||
|
||||
# Detect MIME type from file extension using centralized mappings
|
||||
ext = os.path.splitext(image_path)[1].lower()
|
||||
mime_type = get_image_mime_type(ext)
|
||||
|
||||
# Read and encode the image
|
||||
with open(image_path, "rb") as f:
|
||||
image_data = base64.b64encode(f.read()).decode()
|
||||
|
||||
return {"inline_data": {"mime_type": mime_type, "data": image_data}}
|
||||
except Exception as e:
|
||||
logger.error(f"Error processing image {image_path}: {e}")
|
||||
return None
|
||||
|
||||
Reference in New Issue
Block a user