refactor: cleanup token counting
This commit is contained in:
@@ -73,10 +73,24 @@ class ModelProvider(ABC):
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def count_tokens(self, text: str, model_name: str) -> int:
|
||||
"""Count tokens for the given text using the specified model's tokenizer."""
|
||||
pass
|
||||
"""Estimate token usage for a piece of text.
|
||||
|
||||
Providers can rely on this shared implementation or override it when
|
||||
they expose a more accurate tokenizer. This default uses a simple
|
||||
character-based heuristic so it works even without provider-specific
|
||||
tooling.
|
||||
"""
|
||||
|
||||
resolved_model = self._resolve_model_name(model_name)
|
||||
|
||||
if not text:
|
||||
return 0
|
||||
|
||||
# Rough estimation: ~4 characters per token for English text
|
||||
estimated = max(1, len(text) // 4)
|
||||
logger.debug("Estimating %s tokens for model %s via character heuristic", estimated, resolved_model)
|
||||
return estimated
|
||||
|
||||
@abstractmethod
|
||||
def get_provider_type(self) -> ProviderType:
|
||||
|
||||
@@ -361,15 +361,6 @@ class GeminiModelProvider(ModelProvider):
|
||||
error_msg = f"Gemini API error for model {resolved_name} after {actual_attempts} attempt{'s' if actual_attempts > 1 else ''}: {str(last_exception)}"
|
||||
raise RuntimeError(error_msg) from last_exception
|
||||
|
||||
def count_tokens(self, text: str, model_name: str) -> int:
|
||||
"""Count tokens for the given text using Gemini's tokenizer."""
|
||||
self._resolve_model_name(model_name)
|
||||
|
||||
# For now, use a simple estimation
|
||||
# TODO: Use actual Gemini tokenizer when available in SDK
|
||||
# Rough estimation: ~4 characters per token for English text
|
||||
return len(text) // 4
|
||||
|
||||
def get_provider_type(self) -> ProviderType:
|
||||
"""Get the provider type."""
|
||||
return ProviderType.GOOGLE
|
||||
|
||||
@@ -622,50 +622,6 @@ class OpenAICompatibleProvider(ModelProvider):
|
||||
logging.error(error_msg)
|
||||
raise RuntimeError(error_msg) from last_exception
|
||||
|
||||
def count_tokens(self, text: str, model_name: str) -> int:
|
||||
"""Count tokens for the given text.
|
||||
|
||||
Uses a layered approach:
|
||||
1. Try provider-specific token counting endpoint
|
||||
2. Try tiktoken for known model families
|
||||
3. Fall back to character-based estimation
|
||||
|
||||
Args:
|
||||
text: Text to count tokens for
|
||||
model_name: Model name for tokenizer selection
|
||||
|
||||
Returns:
|
||||
Estimated token count
|
||||
"""
|
||||
# 1. Check if provider has a remote token counting endpoint
|
||||
if hasattr(self, "count_tokens_remote"):
|
||||
try:
|
||||
return self.count_tokens_remote(text, model_name)
|
||||
except Exception as e:
|
||||
logging.debug(f"Remote token counting failed: {e}")
|
||||
|
||||
# 2. Try tiktoken for known models
|
||||
try:
|
||||
import tiktoken
|
||||
|
||||
# Try to get encoding for the specific model
|
||||
try:
|
||||
encoding = tiktoken.encoding_for_model(model_name)
|
||||
except KeyError:
|
||||
encoding = tiktoken.get_encoding("cl100k_base")
|
||||
|
||||
return len(encoding.encode(text))
|
||||
|
||||
except (ImportError, Exception) as e:
|
||||
logging.debug(f"Tiktoken not available or failed: {e}")
|
||||
|
||||
# 3. Fall back to character-based estimation
|
||||
logging.warning(
|
||||
f"No specific tokenizer available for '{model_name}'. "
|
||||
"Using character-based estimation (~4 chars per token)."
|
||||
)
|
||||
return len(text) // 4
|
||||
|
||||
def validate_parameters(self, model_name: str, temperature: float, **kwargs) -> None:
|
||||
"""Validate model parameters.
|
||||
|
||||
@@ -712,6 +668,26 @@ class OpenAICompatibleProvider(ModelProvider):
|
||||
|
||||
return usage
|
||||
|
||||
def count_tokens(self, text: str, model_name: str) -> int:
|
||||
"""Count tokens using OpenAI-compatible tokenizer tables when available."""
|
||||
|
||||
resolved_model = self._resolve_model_name(model_name)
|
||||
|
||||
try:
|
||||
import tiktoken
|
||||
|
||||
try:
|
||||
encoding = tiktoken.encoding_for_model(resolved_model)
|
||||
except KeyError:
|
||||
encoding = tiktoken.get_encoding("cl100k_base")
|
||||
|
||||
return len(encoding.encode(text))
|
||||
|
||||
except (ImportError, Exception) as exc:
|
||||
logging.debug("tiktoken unavailable for %s: %s", resolved_model, exc)
|
||||
|
||||
return super().count_tokens(text, model_name)
|
||||
|
||||
@abstractmethod
|
||||
def get_capabilities(self, model_name: str) -> ModelCapabilities:
|
||||
"""Get capabilities for a specific model.
|
||||
|
||||
Reference in New Issue
Block a user