refactor: Extract image validation to provider base class

Consolidates duplicated image validation logic from individual providers
into a reusable base class method. This improves maintainability and
ensures consistent validation across all providers.

- Added validate_image() method to ModelProvider base class
- Supports both file paths and data URLs
- Validates image format, size, and MIME types
- Added DEFAULT_MAX_IMAGE_SIZE_MB class constant (20MB)
- Refactored Gemini and OpenAI providers to use base validation
- Added comprehensive test suite with 19 tests
- Used minimal mocking approach with concrete test provider class
This commit is contained in:
Nate Parsons
2025-07-10 22:35:07 -07:00
parent ad6b216265
commit 70d6cf8b54
4 changed files with 409 additions and 35 deletions

View File

@@ -1,6 +1,5 @@
"""Base class for OpenAI-compatible API providers."""
import base64
import ipaddress
import logging
import os
@@ -788,30 +787,29 @@ class OpenAICompatibleProvider(ModelProvider):
def _process_image(self, image_path: str) -> Optional[dict]:
"""Process an image for OpenAI-compatible API."""
try:
if image_path.startswith("...
return {"type": "image_url", "image_url": {"url": image_path}}
else:
# Handle file path
if not os.path.exists(image_path):
logging.warning(f"Image file not found: {image_path}")
return None
# Detect MIME type from file extension using centralized mappings
from utils.file_types import get_image_mime_type
ext = os.path.splitext(image_path)[1].lower()
mime_type = get_image_mime_type(ext)
logging.debug(f"Processing image '{image_path}' with extension '{ext}' as MIME type '{mime_type}'")
# Use base class validation
image_bytes, mime_type = self.validate_image(image_path)
# Read and encode the image
with open(image_path, "rb") as f:
image_data = base64.b64encode(f.read()).decode()
import base64
image_data = base64.b64encode(image_bytes).decode()
logging.debug(f"Processing image '{image_path}' as MIME type '{mime_type}'")
# Create data URL for OpenAI API
data_url = f"data:{mime_type};base64,{image_data}"
return {"type": "image_url", "image_url": {"url": data_url}}
except ValueError as e:
logging.warning(str(e))
return None
except Exception as e:
logging.error(f"Error processing image {image_path}: {e}")
return None