docs: updated docs on adding a new tool

This commit is contained in:
Fahad
2025-10-02 23:28:50 +04:00
parent 8b3a2867fb
commit 6fb51adfff

View File

@@ -1,137 +1,152 @@
# Adding Tools to Zen MCP Server # Adding Tools to Zen MCP Server
This guide explains how to add new tools to the Zen MCP Server. Tools enable Claude to interact with AI models for specialized tasks like code analysis, debugging, and collaborative thinking. Zen MCP tools are Python classes that inherit from the shared infrastructure in `tools/shared/base_tool.py`.
Every tool must provide a request model (Pydantic), a system prompt, and the methods the base class marks as
abstract. The quickest path to a working tool is to copy an existing implementation that matches your use case
(`tools/chat.py` for simple request/response tools, `tools/consensus.py` or `tools/codereview.py` for workflows).
This document captures the minimal steps required to add a new tool without drifting from the current codebase.
## Tool Types ## 1. Pick the Tool Architecture
Zen supports two tool architectures: Zen supports two architectures, implemented in `tools/simple/base.py` and `tools/workflow/base.py`.
### Simple Tools - **SimpleTool** (`SimpleTool`): single MCP call request comes in, you build one prompt, call the model, return.
- **Pattern**: Single request → AI response → formatted output The base class handles schema generation, conversation threading, file loading, temperature bounds, retries,
- **Use cases**: Chat, quick analysis, straightforward tasks and response formatting hooks.
- **Benefits**: Clean, lightweight, easy to implement - **WorkflowTool** (`WorkflowTool`): multi-step workflows driven by `BaseWorkflowMixin`. The tool accumulates
- **Base class**: `SimpleTool` (`tools/simple/base.py`) findings across steps, forces Claude to pause between investigations, and optionally calls an expert model at
the end. Use this whenever you need structured multi-step work (debug, code review, consensus, etc.).
### Multi-step Workflow Tools If you are unsure, compare `tools/chat.py` (SimpleTool) and `tools/consensus.py` (WorkflowTool) to see the patterns.
- **Pattern**: Step-by-step investigation with Claude pausing between steps to investigate
- **Use cases**: Complex analysis, debugging, code review, security audits
- **Benefits**: Systematic investigation, expert analysis integration, better results for complex tasks
- **Base class**: `WorkflowTool` (`tools/workflow/base.py`)
**Recommendation**: Use workflow tools for most complex analysis tasks as they produce significantly better results by forcing systematic investigation. ## 2. Common Responsibilities
## Implementation Guide Regardless of architecture, subclasses of `BaseTool` must provide:
### Simple Tool Example - `get_name()`: unique string identifier used in the MCP registry.
- `get_description()`: concise, action-oriented summary for clients.
- `get_system_prompt()`: import your prompt from `systemprompts/` and return it.
- `get_input_schema()`: leverage the schema builders (`SchemaBuilder` or `WorkflowSchemaBuilder`) or override to
match an existing contract exactly.
- `get_request_model()`: return the Pydantic model used to validate the incoming arguments.
- `async prepare_prompt(...)`: assemble the content sent to the model. You can reuse helpers like
`prepare_chat_style_prompt` or `build_standard_prompt`.
The base class already handles model selection (`ToolModelCategory`), conversation memory, token budgeting, safety
failures, retries, and serialization. Override hooks like `get_default_temperature`, `get_model_category`, or
`format_response` only when you need behaviour different from the defaults.
## 3. Implementing a Simple Tool
1. **Define a request model** that inherits from `tools.shared.base_models.ToolRequest` to describe the fields and
validation rules for your tool.
2. **Implement the tool class** by inheriting from `SimpleTool` and overriding the required methods. Most tools can
rely on `SchemaBuilder` and the shared field constants already exposed on `SimpleTool`.
```python ```python
from tools.simple.base import SimpleTool
from tools.shared.base_models import ToolRequest
from pydantic import Field from pydantic import Field
from systemprompts import CHAT_PROMPT
from tools.shared.base_models import ToolRequest
from tools.simple.base import SimpleTool
class ChatRequest(ToolRequest):
prompt: str = Field(..., description="Your question or idea.")
files: list[str] | None = Field(default_factory=list)
class ChatTool(SimpleTool): class ChatTool(SimpleTool):
def get_name(self) -> str: def get_name(self) -> str: # required by BaseTool
return "chat" return "chat"
def get_description(self) -> str: def get_description(self) -> str:
return "GENERAL CHAT & COLLABORATIVE THINKING..." return "General chat and collaborative thinking partner."
def get_tool_fields(self) -> dict: def get_system_prompt(self) -> str:
return { return CHAT_PROMPT
"prompt": {
"type": "string", def get_request_model(self):
"description": "Your question or idea..." return ChatRequest
},
"files": SimpleTool.FILES_FIELD # Reuse common field def get_tool_fields(self) -> dict[str, dict[str, object]]:
} return {"prompt": {"type": "string", "description": "Your question."}, "files": SimpleTool.FILES_FIELD}
def get_required_fields(self) -> list[str]: def get_required_fields(self) -> list[str]:
return ["prompt"] return ["prompt"]
async def prepare_prompt(self, request) -> str: async def prepare_prompt(self, request: ChatRequest) -> str:
return self.prepare_chat_style_prompt(request) return self.prepare_chat_style_prompt(request)
``` ```
### Workflow Tool Example Only implement `get_input_schema()` manually if you must preserve an existing schema contract (see
`tools/chat.py` for an example). Otherwise `SimpleTool.get_input_schema()` merges your field definitions with the
common parameters (temperature, model, continuation_id, etc.).
## 4. Implementing a Workflow Tool
Workflow tools extend `WorkflowTool`, which mixes in `BaseWorkflowMixin` for step tracking and expert analysis.
1. **Create a request model** that inherits from `tools.shared.base_models.WorkflowRequest` (or a subclass) and add
any tool-specific fields or validators. Examples: `CodeReviewRequest`, `ConsensusRequest`.
2. **Override the workflow hooks** to steer the investigation. At minimum you must implement
`get_required_actions(...)`; override `should_call_expert_analysis(...)` and
`prepare_expert_analysis_context(...)` when the expert model call should happen conditionally.
3. **Expose the schema** either by returning `WorkflowSchemaBuilder.build_schema(...)` (the default implementation on
`WorkflowTool` already does this) or by overriding `get_input_schema()` if you need custom descriptions/enums.
```python ```python
from pydantic import Field
from systemprompts import CONSENSUS_PROMPT
from tools.shared.base_models import WorkflowRequest
from tools.workflow.base import WorkflowTool from tools.workflow.base import WorkflowTool
class DebugTool(WorkflowTool): class ConsensusRequest(WorkflowRequest):
models: list[dict] = Field(..., description="Models to consult (with optional stance).")
class ConsensusTool(WorkflowTool):
def get_name(self) -> str: def get_name(self) -> str:
return "debug" return "consensus"
def get_description(self) -> str: def get_description(self) -> str:
return "DEBUG & ROOT CAUSE ANALYSIS - Step-by-step investigation..." return "Multi-model consensus workflow with expert synthesis."
def get_required_actions(self, step_number, confidence, findings, total_steps): def get_system_prompt(self) -> str:
return CONSENSUS_PROMPT
def get_workflow_request_model(self):
return ConsensusRequest
def get_required_actions(self, step_number: int, confidence: str, findings: str, total_steps: int, request=None) -> list[str]:
if step_number == 1: if step_number == 1:
return ["Search for code related to issue", "Examine relevant files"] return ["Write the shared proposal all models will evaluate."]
return ["Trace execution flow", "Verify hypothesis with code evidence"] return ["Summarize the latest model response before moving on."]
def should_call_expert_analysis(self, consolidated_findings): def should_call_expert_analysis(self, consolidated_findings, request=None) -> bool:
return len(consolidated_findings.relevant_files) > 0 return not (request and request.next_step_required)
def prepare_expert_analysis_context(self, consolidated_findings): def prepare_expert_analysis_context(self, consolidated_findings) -> str:
return f"Investigation findings: {consolidated_findings.findings}" return "\n".join(consolidated_findings.findings)
``` ```
## Key Implementation Points `WorkflowTool` already records work history, merges findings, and handles continuation IDs. Use helpers such as
`get_standard_required_actions` when you want default guidance, and override `requires_expert_analysis()` if the tool
never calls out to the assistant model.
### Simple Tools ## 5. Register the Tool
- Inherit from `SimpleTool`
- Implement: `get_name()`, `get_description()`, `get_tool_fields()`, `prepare_prompt()`
- Override: `get_required_fields()`, `format_response()` (optional)
### Workflow Tools 1. **Create or reuse a system prompt** in `systemprompts/your_tool_prompt.py` and export it from
- Inherit from `WorkflowTool` `systemprompts/__init__.py`.
- Implement: `get_name()`, `get_description()`, `get_required_actions()`, `should_call_expert_analysis()`, `prepare_expert_analysis_context()` 2. **Expose the tool class** from `tools/__init__.py` so that `server.py` can import it.
- Override: `get_tool_fields()` (optional) 3. **Add an instance to the `TOOLS` dictionary** in `server.py`. This makes the tool callable via MCP.
4. **(Optional) Add a prompt template** to `PROMPT_TEMPLATES` in `server.py` if you want clients to show a canned
launch command.
5. Confirm that `DISABLED_TOOLS` environment variable handling covers the new tool if you need to toggle it.
### Registration ## 6. Validate the Tool
1. Create system prompt in `systemprompts/`
2. Import in `server.py`
3. Add to `TOOLS` dictionary
## Testing Your Tool - Run unit tests that cover any new request/response logic: `python -m pytest tests/ -v -m "not integration"`.
- Add a simulator scenario in `simulator_tests/communication_simulator_test.py` to exercise the tool end-to-end and
### Simulator Tests (Recommended) run it with `python communication_simulator_test.py --individual <case>` or `--quick` for the fast smoke suite.
The most important validation is adding your tool to the simulator test suite: - If the tool interacts with external providers or multiple models, consider integration coverage via
`./run_integration_tests.sh --with-simulator`.
```python
# Add to communication_simulator_test.py
def test_your_tool_validation(self):
"""Test your new tool with real API calls"""
response = self.call_tool("your_tool", {
"prompt": "Test the tool functionality",
"model": "flash"
})
# Validate response structure and content
self.assertIn("status", response)
self.assertEqual(response["status"], "success")
```
**Why simulator tests matter:**
- Test actual MCP communication with Claude
- Validate real AI model interactions
- Catch integration issues unit tests miss
- Ensure proper conversation threading
- Verify file handling and deduplication
### Running Tests
```bash
# Test your specific tool
python communication_simulator_test.py --individual your_tool_validation
# Quick comprehensive test
python communication_simulator_test.py --quick
```
## Examples to Study
- **Simple Tool**: `tools/chat.py` - Clean request/response pattern
- **Workflow Tool**: `tools/debug.py` - Multi-step investigation with expert analysis
**Recommendation**: Start with existing tools as templates and explore the base classes to understand available hooks and methods.
Following the steps above keeps new tools aligned with the existing infrastructure and avoids drift between the
documentation and the actual base classes.