refactor: cleanup provider base class; cleanup shared responsibilities; cleanup public contract

docs: document provider base class
refactor: cleanup custom provider, it should only deal with `is_custom` model configurations
fix: make sure openrouter provider does not load `is_custom` models
fix: listmodels tool cleanup
This commit is contained in:
Fahad
2025-10-02 12:59:45 +04:00
parent 6ec2033f34
commit 693b84db2b
15 changed files with 509 additions and 751 deletions

View File

@@ -7,7 +7,7 @@ This guide explains how to add support for a new AI model provider to the Zen MC
Each provider:
- Inherits from `ModelProvider` (base class) or `OpenAICompatibleProvider` (for OpenAI-compatible APIs)
- Defines supported models using `ModelCapabilities` objects
- Implements a few core abstract methods
- Implements the minimal abstract hooks (`get_provider_type()` and `generate_content()`)
- Gets registered automatically via environment variables
## Choose Your Implementation Path
@@ -15,11 +15,11 @@ Each provider:
**Option A: Full Provider (`ModelProvider`)**
- For APIs with unique features or custom authentication
- Complete control over API calls and response handling
- Required methods: `generate_content()`, `get_capabilities()`, `validate_model_name()`, `get_provider_type()` (override `count_tokens()` only when you have a provider-accurate tokenizer)
- Implement `generate_content()` and `get_provider_type()`; override `get_all_model_capabilities()` to expose your catalogue and extend `_lookup_capabilities()` / `_ensure_model_allowed()` only when you need registry lookups or custom restriction rules (override `count_tokens()` only when you have a provider-accurate tokenizer)
**Option B: OpenAI-Compatible (`OpenAICompatibleProvider`)**
- For APIs that follow OpenAI's chat completion format
- Only need to define: model configurations, capabilities, and validation
- Supply `MODEL_CAPABILITIES`, override `get_provider_type()`, and optionally adjust configuration (the base class handles alias resolution, validation, and request wiring)
- Inherits all API handling automatically
⚠️ **Important**: If using aliases (like `"gpt"``"gpt-4"`), override `generate_content()` to resolve them before API calls.
@@ -62,8 +62,7 @@ logger = logging.getLogger(__name__)
class ExampleModelProvider(ModelProvider):
"""Example model provider implementation."""
# Define models using ModelCapabilities objects (like Gemini provider)
MODEL_CAPABILITIES = {
"example-large": ModelCapabilities(
provider=ProviderType.EXAMPLE,
@@ -87,51 +86,47 @@ class ExampleModelProvider(ModelProvider):
aliases=["small", "fast"],
),
}
def __init__(self, api_key: str, **kwargs):
super().__init__(api_key, **kwargs)
# Initialize your API client here
def get_capabilities(self, model_name: str) -> ModelCapabilities:
def get_all_model_capabilities(self) -> dict[str, ModelCapabilities]:
return dict(self.MODEL_CAPABILITIES)
def get_provider_type(self) -> ProviderType:
return ProviderType.EXAMPLE
def generate_content(
self,
prompt: str,
model_name: str,
system_prompt: Optional[str] = None,
temperature: float = 0.7,
max_output_tokens: Optional[int] = None,
**kwargs,
) -> ModelResponse:
resolved_name = self._resolve_model_name(model_name)
if resolved_name not in self.MODEL_CAPABILITIES:
raise ValueError(f"Unsupported model: {model_name}")
# Apply restrictions if needed
from utils.model_restrictions import get_restriction_service
restriction_service = get_restriction_service()
if not restriction_service.is_allowed(ProviderType.EXAMPLE, resolved_name, model_name):
raise ValueError(f"Model '{model_name}' is not allowed.")
return self.MODEL_CAPABILITIES[resolved_name]
def generate_content(self, prompt: str, model_name: str, system_prompt: Optional[str] = None,
temperature: float = 0.7, max_output_tokens: Optional[int] = None, **kwargs) -> ModelResponse:
resolved_name = self._resolve_model_name(model_name)
# Your API call logic here
# response = your_api_client.generate(...)
return ModelResponse(
content="Generated response", # From your API
content="Generated response",
usage={"input_tokens": 100, "output_tokens": 50, "total_tokens": 150},
model_name=resolved_name,
friendly_name="Example",
provider=ProviderType.EXAMPLE,
)
def get_provider_type(self) -> ProviderType:
return ProviderType.EXAMPLE
def validate_model_name(self, model_name: str) -> bool:
resolved_name = self._resolve_model_name(model_name)
return resolved_name in self.MODEL_CAPABILITIES
```
`ModelProvider.count_tokens()` uses a simple 4-characters-per-token estimate so
providers work out of the box. Override the method only when you can call into
the provider's real tokenizer (for example, the OpenAI-compatible base class
already integrates `tiktoken`).
`ModelProvider.get_capabilities()` automatically resolves aliases, enforces the
shared restriction service, and returns the correct `ModelCapabilities`
instance. Override `_lookup_capabilities()` only when you source capabilities
from a registry or remote API. `ModelProvider.count_tokens()` uses a simple
4-characters-per-token estimate so providers work out of the box—override it
only when you can call the provider's real tokenizer (for example, the
OpenAI-compatible base class integrates `tiktoken`).
#### Option B: OpenAI-Compatible Provider (Simplified)
@@ -172,26 +167,16 @@ class ExampleProvider(OpenAICompatibleProvider):
def __init__(self, api_key: str, **kwargs):
kwargs.setdefault("base_url", "https://api.example.com/v1")
super().__init__(api_key, **kwargs)
def get_capabilities(self, model_name: str) -> ModelCapabilities:
resolved_name = self._resolve_model_name(model_name)
if resolved_name not in self.MODEL_CAPABILITIES:
raise ValueError(f"Unsupported model: {model_name}")
return self.MODEL_CAPABILITIES[resolved_name]
def get_provider_type(self) -> ProviderType:
return ProviderType.EXAMPLE
def validate_model_name(self, model_name: str) -> bool:
resolved_name = self._resolve_model_name(model_name)
return resolved_name in self.MODEL_CAPABILITIES
def generate_content(self, prompt: str, model_name: str, **kwargs) -> ModelResponse:
# IMPORTANT: Resolve aliases before API call
resolved_model_name = self._resolve_model_name(model_name)
return super().generate_content(prompt=prompt, model_name=resolved_model_name, **kwargs)
```
`OpenAICompatibleProvider` already exposes the declared models via
`MODEL_CAPABILITIES`, resolves aliases through the shared base pipeline, and
enforces restrictions. Most subclasses only need to provide the class metadata
shown above.
### 3. Register Your Provider
Add environment variable mapping in `providers/registry.py`:
@@ -237,15 +222,11 @@ DISABLED_TOOLS=debug,tracer
Create basic tests to verify your implementation:
```python
# Test model validation
provider = ExampleModelProvider("test-key")
assert provider.validate_model_name("large") == True
assert provider.validate_model_name("unknown") == False
# Test capabilities
caps = provider.get_capabilities("large")
assert caps.context_window > 0
assert caps.provider == ProviderType.EXAMPLE
provider = ExampleModelProvider("test-key")
capabilities = provider.get_capabilities("large")
assert capabilities.context_window > 0
assert capabilities.provider == ProviderType.EXAMPLE
```
@@ -259,31 +240,19 @@ When a user requests a model, providers are checked in priority order:
3. **OpenRouter** - catch-all for everything else
### Model Validation
Your `validate_model_name()` should **only** return `True` for models you explicitly support:
```python
def validate_model_name(self, model_name: str) -> bool:
resolved_name = self._resolve_model_name(model_name)
return resolved_name in self.MODEL_CAPABILITIES # Be specific!
```
`ModelProvider.validate_model_name()` delegates to `get_capabilities()` so most
providers can rely on the shared implementation. Override it only when you need
to opt out of that pipeline—for example, `CustomProvider` declines OpenRouter
models so they fall through to the dedicated OpenRouter provider.
### Model Aliases
The base class handles alias resolution automatically via the `aliases` field in `ModelCapabilities`.
Aliases declared on `ModelCapabilities` are applied automatically via
`_resolve_model_name()`, and both the validation and request flows call it
before touching your SDK. Override `generate_content()` only when your provider
needs additional alias handling beyond the shared behaviour.
## Important Notes
### Alias Resolution in OpenAI-Compatible Providers
If using `OpenAICompatibleProvider` with aliases, **you must override `generate_content()`** to resolve aliases before API calls:
```python
def generate_content(self, prompt: str, model_name: str, **kwargs) -> ModelResponse:
# Resolve alias before API call
resolved_model_name = self._resolve_model_name(model_name)
return super().generate_content(prompt=prompt, model_name=resolved_model_name, **kwargs)
```
Without this, API calls with aliases like `"large"` will fail because your API doesn't recognize the alias.
## Best Practices
- **Be specific in model validation** - only accept models you actually support