Native support for xAI Grok3

Model shorthand mapping related fixes
Comprehensive auto-mode related tests
This commit is contained in:
Fahad
2025-06-15 12:21:44 +04:00
parent 4becd70a82
commit 6304b7af6b
24 changed files with 2278 additions and 58 deletions

View File

@@ -11,6 +11,7 @@ class ProviderType(Enum):
GOOGLE = "google"
OPENAI = "openai"
XAI = "xai"
OPENROUTER = "openrouter"
CUSTOM = "custom"

View File

@@ -1,10 +1,12 @@
"""OpenAI model provider implementation."""
import logging
from typing import Optional
from .base import (
FixedTemperatureConstraint,
ModelCapabilities,
ModelResponse,
ProviderType,
RangeTemperatureConstraint,
)
@@ -111,6 +113,29 @@ class OpenAIModelProvider(OpenAICompatibleProvider):
return True
def generate_content(
self,
prompt: str,
model_name: str,
system_prompt: Optional[str] = None,
temperature: float = 0.7,
max_output_tokens: Optional[int] = None,
**kwargs,
) -> ModelResponse:
"""Generate content using OpenAI API with proper model name resolution."""
# Resolve model alias before making API call
resolved_model_name = self._resolve_model_name(model_name)
# Call parent implementation with resolved model name
return super().generate_content(
prompt=prompt,
model_name=resolved_model_name,
system_prompt=system_prompt,
temperature=temperature,
max_output_tokens=max_output_tokens,
**kwargs,
)
def supports_thinking_mode(self, model_name: str) -> bool:
"""Check if the model supports extended thinking mode."""
# Currently no OpenAI models support extended thinking

View File

@@ -117,6 +117,7 @@ class ModelProviderRegistry:
PROVIDER_PRIORITY_ORDER = [
ProviderType.GOOGLE, # Direct Gemini access
ProviderType.OPENAI, # Direct OpenAI access
ProviderType.XAI, # Direct X.AI GROK access
ProviderType.CUSTOM, # Local/self-hosted models
ProviderType.OPENROUTER, # Catch-all for cloud models
]
@@ -173,16 +174,22 @@ class ModelProviderRegistry:
# Get supported models based on provider type
if hasattr(provider, "SUPPORTED_MODELS"):
for model_name, config in provider.SUPPORTED_MODELS.items():
# Skip aliases (string values)
# Handle both base models (dict configs) and aliases (string values)
if isinstance(config, str):
continue
# Check restrictions if enabled
if restriction_service and not restriction_service.is_allowed(provider_type, model_name):
logging.debug(f"Model {model_name} filtered by restrictions")
continue
models[model_name] = provider_type
# This is an alias - check if the target model would be allowed
target_model = config
if restriction_service and not restriction_service.is_allowed(provider_type, target_model):
logging.debug(f"Alias {model_name} -> {target_model} filtered by restrictions")
continue
# Allow the alias
models[model_name] = provider_type
else:
# This is a base model with config dict
# Check restrictions if enabled
if restriction_service and not restriction_service.is_allowed(provider_type, model_name):
logging.debug(f"Model {model_name} filtered by restrictions")
continue
models[model_name] = provider_type
elif provider_type == ProviderType.OPENROUTER:
# OpenRouter uses a registry system instead of SUPPORTED_MODELS
if hasattr(provider, "_registry") and provider._registry:
@@ -230,6 +237,7 @@ class ModelProviderRegistry:
key_mapping = {
ProviderType.GOOGLE: "GEMINI_API_KEY",
ProviderType.OPENAI: "OPENAI_API_KEY",
ProviderType.XAI: "XAI_API_KEY",
ProviderType.OPENROUTER: "OPENROUTER_API_KEY",
ProviderType.CUSTOM: "CUSTOM_API_KEY", # Can be empty for providers that don't need auth
}
@@ -264,9 +272,13 @@ class ModelProviderRegistry:
# Group by provider
openai_models = [m for m, p in available_models.items() if p == ProviderType.OPENAI]
gemini_models = [m for m, p in available_models.items() if p == ProviderType.GOOGLE]
xai_models = [m for m, p in available_models.items() if p == ProviderType.XAI]
openrouter_models = [m for m, p in available_models.items() if p == ProviderType.OPENROUTER]
openai_available = bool(openai_models)
gemini_available = bool(gemini_models)
xai_available = bool(xai_models)
openrouter_available = bool(openrouter_models)
if tool_category == ToolModelCategory.EXTENDED_REASONING:
# Prefer thinking-capable models for deep reasoning tools
@@ -275,17 +287,25 @@ class ModelProviderRegistry:
elif openai_available and openai_models:
# Fall back to any available OpenAI model
return openai_models[0]
elif xai_available and "grok-3" in xai_models:
return "grok-3" # GROK-3 for deep reasoning
elif xai_available and xai_models:
# Fall back to any available XAI model
return xai_models[0]
elif gemini_available and any("pro" in m for m in gemini_models):
# Find the pro model (handles full names)
return next(m for m in gemini_models if "pro" in m)
elif gemini_available and gemini_models:
# Fall back to any available Gemini model
return gemini_models[0]
else:
# Try to find thinking-capable model from custom/openrouter
elif openrouter_available:
# Try to find thinking-capable model from openrouter
thinking_model = cls._find_extended_thinking_model()
if thinking_model:
return thinking_model
# Fallback to first available OpenRouter model
return openrouter_models[0]
else:
# Fallback to pro if nothing found
return "gemini-2.5-pro-preview-06-05"
@@ -298,12 +318,20 @@ class ModelProviderRegistry:
elif openai_available and openai_models:
# Fall back to any available OpenAI model
return openai_models[0]
elif xai_available and "grok-3-fast" in xai_models:
return "grok-3-fast" # GROK-3 Fast for speed
elif xai_available and xai_models:
# Fall back to any available XAI model
return xai_models[0]
elif gemini_available and any("flash" in m for m in gemini_models):
# Find the flash model (handles full names)
return next(m for m in gemini_models if "flash" in m)
elif gemini_available and gemini_models:
# Fall back to any available Gemini model
return gemini_models[0]
elif openrouter_available:
# Fallback to first available OpenRouter model
return openrouter_models[0]
else:
# Default to flash
return "gemini-2.5-flash-preview-05-20"
@@ -315,10 +343,16 @@ class ModelProviderRegistry:
return "o3-mini" # Second choice
elif openai_available and openai_models:
return openai_models[0]
elif xai_available and "grok-3" in xai_models:
return "grok-3" # GROK-3 as balanced choice
elif xai_available and xai_models:
return xai_models[0]
elif gemini_available and any("flash" in m for m in gemini_models):
return next(m for m in gemini_models if "flash" in m)
elif gemini_available and gemini_models:
return gemini_models[0]
elif openrouter_available:
return openrouter_models[0]
else:
# No models available due to restrictions - check if any providers exist
if not available_models:
@@ -355,8 +389,9 @@ class ModelProviderRegistry:
preferred_models = [
"anthropic/claude-3.5-sonnet",
"anthropic/claude-3-opus-20240229",
"meta-llama/llama-3.1-70b-instruct",
"google/gemini-2.5-pro-preview-06-05",
"google/gemini-pro-1.5",
"meta-llama/llama-3.1-70b-instruct",
"mistralai/mixtral-8x7b-instruct",
]
for model in preferred_models:

135
providers/xai.py Normal file
View File

@@ -0,0 +1,135 @@
"""X.AI (GROK) model provider implementation."""
import logging
from typing import Optional
from .base import (
ModelCapabilities,
ModelResponse,
ProviderType,
RangeTemperatureConstraint,
)
from .openai_compatible import OpenAICompatibleProvider
logger = logging.getLogger(__name__)
class XAIModelProvider(OpenAICompatibleProvider):
"""X.AI GROK API provider (api.x.ai)."""
FRIENDLY_NAME = "X.AI"
# Model configurations
SUPPORTED_MODELS = {
"grok-3": {
"context_window": 131_072, # 131K tokens
"supports_extended_thinking": False,
},
"grok-3-fast": {
"context_window": 131_072, # 131K tokens
"supports_extended_thinking": False,
},
# Shorthands for convenience
"grok": "grok-3", # Default to grok-3
"grok3": "grok-3",
"grok3fast": "grok-3-fast",
"grokfast": "grok-3-fast",
}
def __init__(self, api_key: str, **kwargs):
"""Initialize X.AI provider with API key."""
# Set X.AI base URL
kwargs.setdefault("base_url", "https://api.x.ai/v1")
super().__init__(api_key, **kwargs)
def get_capabilities(self, model_name: str) -> ModelCapabilities:
"""Get capabilities for a specific X.AI model."""
# Resolve shorthand
resolved_name = self._resolve_model_name(model_name)
if resolved_name not in self.SUPPORTED_MODELS or isinstance(self.SUPPORTED_MODELS[resolved_name], str):
raise ValueError(f"Unsupported X.AI model: {model_name}")
# Check if model is allowed by restrictions
from utils.model_restrictions import get_restriction_service
restriction_service = get_restriction_service()
if not restriction_service.is_allowed(ProviderType.XAI, resolved_name, model_name):
raise ValueError(f"X.AI model '{model_name}' is not allowed by restriction policy.")
config = self.SUPPORTED_MODELS[resolved_name]
# Define temperature constraints for GROK models
# GROK supports the standard OpenAI temperature range
temp_constraint = RangeTemperatureConstraint(0.0, 2.0, 0.7)
return ModelCapabilities(
provider=ProviderType.XAI,
model_name=resolved_name,
friendly_name=self.FRIENDLY_NAME,
context_window=config["context_window"],
supports_extended_thinking=config["supports_extended_thinking"],
supports_system_prompts=True,
supports_streaming=True,
supports_function_calling=True,
temperature_constraint=temp_constraint,
)
def get_provider_type(self) -> ProviderType:
"""Get the provider type."""
return ProviderType.XAI
def validate_model_name(self, model_name: str) -> bool:
"""Validate if the model name is supported and allowed."""
resolved_name = self._resolve_model_name(model_name)
# First check if model is supported
if resolved_name not in self.SUPPORTED_MODELS or not isinstance(self.SUPPORTED_MODELS[resolved_name], dict):
return False
# Then check if model is allowed by restrictions
from utils.model_restrictions import get_restriction_service
restriction_service = get_restriction_service()
if not restriction_service.is_allowed(ProviderType.XAI, resolved_name, model_name):
logger.debug(f"X.AI model '{model_name}' -> '{resolved_name}' blocked by restrictions")
return False
return True
def generate_content(
self,
prompt: str,
model_name: str,
system_prompt: Optional[str] = None,
temperature: float = 0.7,
max_output_tokens: Optional[int] = None,
**kwargs,
) -> ModelResponse:
"""Generate content using X.AI API with proper model name resolution."""
# Resolve model alias before making API call
resolved_model_name = self._resolve_model_name(model_name)
# Call parent implementation with resolved model name
return super().generate_content(
prompt=prompt,
model_name=resolved_model_name,
system_prompt=system_prompt,
temperature=temperature,
max_output_tokens=max_output_tokens,
**kwargs,
)
def supports_thinking_mode(self, model_name: str) -> bool:
"""Check if the model supports extended thinking mode."""
# Currently GROK models do not support extended thinking
# This may change with future GROK model releases
return False
def _resolve_model_name(self, model_name: str) -> str:
"""Resolve model shorthand to full name."""
# Check if it's a shorthand
shorthand_value = self.SUPPORTED_MODELS.get(model_name)
if isinstance(shorthand_value, str):
return shorthand_value
return model_name