WIP - OpenRouter support and related refactoring

This commit is contained in:
Fahad
2025-06-12 22:17:11 +04:00
parent 22093bbf18
commit 52b45f2b03
13 changed files with 786 additions and 112 deletions

View File

@@ -3,20 +3,18 @@
import logging
from typing import Optional
from openai import OpenAI
from .base import (
FixedTemperatureConstraint,
ModelCapabilities,
ModelProvider,
ModelResponse,
ProviderType,
RangeTemperatureConstraint,
)
from .openai_compatible import OpenAICompatibleProvider
class OpenAIModelProvider(ModelProvider):
"""OpenAI model provider implementation."""
class OpenAIModelProvider(OpenAICompatibleProvider):
"""Official OpenAI API provider (api.openai.com)."""
# Model configurations
SUPPORTED_MODELS = {
@@ -32,23 +30,10 @@ class OpenAIModelProvider(ModelProvider):
def __init__(self, api_key: str, **kwargs):
"""Initialize OpenAI provider with API key."""
# Set default OpenAI base URL, allow override for regions/custom endpoints
kwargs.setdefault("base_url", "https://api.openai.com/v1")
super().__init__(api_key, **kwargs)
self._client = None
self.base_url = kwargs.get("base_url") # Support custom endpoints
self.organization = kwargs.get("organization")
@property
def client(self):
"""Lazy initialization of OpenAI client."""
if self._client is None:
client_kwargs = {"api_key": self.api_key}
if self.base_url:
client_kwargs["base_url"] = self.base_url
if self.organization:
client_kwargs["organization"] = self.organization
self._client = OpenAI(**client_kwargs)
return self._client
def get_capabilities(self, model_name: str) -> ModelCapabilities:
"""Get capabilities for a specific OpenAI model."""
@@ -77,79 +62,6 @@ class OpenAIModelProvider(ModelProvider):
temperature_constraint=temp_constraint,
)
def generate_content(
self,
prompt: str,
model_name: str,
system_prompt: Optional[str] = None,
temperature: float = 0.7,
max_output_tokens: Optional[int] = None,
**kwargs,
) -> ModelResponse:
"""Generate content using OpenAI model."""
# Validate parameters
self.validate_parameters(model_name, temperature)
# Prepare messages
messages = []
if system_prompt:
messages.append({"role": "system", "content": system_prompt})
messages.append({"role": "user", "content": prompt})
# Prepare completion parameters
completion_params = {
"model": model_name,
"messages": messages,
"temperature": temperature,
}
# Add max tokens if specified
if max_output_tokens:
completion_params["max_tokens"] = max_output_tokens
# Add any additional OpenAI-specific parameters
for key, value in kwargs.items():
if key in ["top_p", "frequency_penalty", "presence_penalty", "seed", "stop"]:
completion_params[key] = value
try:
# Generate completion
response = self.client.chat.completions.create(**completion_params)
# Extract content and usage
content = response.choices[0].message.content
usage = self._extract_usage(response)
return ModelResponse(
content=content,
usage=usage,
model_name=model_name,
friendly_name="OpenAI",
provider=ProviderType.OPENAI,
metadata={
"finish_reason": response.choices[0].finish_reason,
"model": response.model, # Actual model used (in case of fallbacks)
"id": response.id,
"created": response.created,
},
)
except Exception as e:
# Log error and re-raise with more context
error_msg = f"OpenAI API error for model {model_name}: {str(e)}"
logging.error(error_msg)
raise RuntimeError(error_msg) from e
def count_tokens(self, text: str, model_name: str) -> int:
"""Count tokens for the given text.
Note: For accurate token counting, we should use tiktoken library.
This is a simplified estimation.
"""
# TODO: Implement proper token counting with tiktoken
# For now, use rough estimation
# O3 models ~4 chars per token
return len(text) // 4
def get_provider_type(self) -> ProviderType:
"""Get the provider type."""
@@ -165,13 +77,3 @@ class OpenAIModelProvider(ModelProvider):
# This may change with future O3 models
return False
def _extract_usage(self, response) -> dict[str, int]:
"""Extract token usage from OpenAI response."""
usage = {}
if hasattr(response, "usage") and response.usage:
usage["input_tokens"] = response.usage.prompt_tokens
usage["output_tokens"] = response.usage.completion_tokens
usage["total_tokens"] = response.usage.total_tokens
return usage