Use ModelCapabilities consistently instead of dictionaries
Moved aliases as part of SUPPORTED_MODELS instead of shorthand, more in line with how custom_models are declared Further refactoring to cleanup some code
This commit is contained in:
134
providers/xai.py
134
providers/xai.py
@@ -7,7 +7,7 @@ from .base import (
|
||||
ModelCapabilities,
|
||||
ModelResponse,
|
||||
ProviderType,
|
||||
RangeTemperatureConstraint,
|
||||
create_temperature_constraint,
|
||||
)
|
||||
from .openai_compatible import OpenAICompatibleProvider
|
||||
|
||||
@@ -19,23 +19,42 @@ class XAIModelProvider(OpenAICompatibleProvider):
|
||||
|
||||
FRIENDLY_NAME = "X.AI"
|
||||
|
||||
# Model configurations
|
||||
# Model configurations using ModelCapabilities objects
|
||||
SUPPORTED_MODELS = {
|
||||
"grok-3": {
|
||||
"context_window": 131_072, # 131K tokens
|
||||
"supports_extended_thinking": False,
|
||||
"description": "GROK-3 (131K context) - Advanced reasoning model from X.AI, excellent for complex analysis",
|
||||
},
|
||||
"grok-3-fast": {
|
||||
"context_window": 131_072, # 131K tokens
|
||||
"supports_extended_thinking": False,
|
||||
"description": "GROK-3 Fast (131K context) - Higher performance variant, faster processing but more expensive",
|
||||
},
|
||||
# Shorthands for convenience
|
||||
"grok": "grok-3", # Default to grok-3
|
||||
"grok3": "grok-3",
|
||||
"grok3fast": "grok-3-fast",
|
||||
"grokfast": "grok-3-fast",
|
||||
"grok-3": ModelCapabilities(
|
||||
provider=ProviderType.XAI,
|
||||
model_name="grok-3",
|
||||
friendly_name="X.AI (Grok 3)",
|
||||
context_window=131_072, # 131K tokens
|
||||
supports_extended_thinking=False,
|
||||
supports_system_prompts=True,
|
||||
supports_streaming=True,
|
||||
supports_function_calling=True,
|
||||
supports_json_mode=False, # Assuming GROK doesn't have JSON mode yet
|
||||
supports_images=False, # Assuming GROK is text-only for now
|
||||
max_image_size_mb=0.0,
|
||||
supports_temperature=True,
|
||||
temperature_constraint=create_temperature_constraint("range"),
|
||||
description="GROK-3 (131K context) - Advanced reasoning model from X.AI, excellent for complex analysis",
|
||||
aliases=["grok", "grok3"],
|
||||
),
|
||||
"grok-3-fast": ModelCapabilities(
|
||||
provider=ProviderType.XAI,
|
||||
model_name="grok-3-fast",
|
||||
friendly_name="X.AI (Grok 3 Fast)",
|
||||
context_window=131_072, # 131K tokens
|
||||
supports_extended_thinking=False,
|
||||
supports_system_prompts=True,
|
||||
supports_streaming=True,
|
||||
supports_function_calling=True,
|
||||
supports_json_mode=False, # Assuming GROK doesn't have JSON mode yet
|
||||
supports_images=False, # Assuming GROK is text-only for now
|
||||
max_image_size_mb=0.0,
|
||||
supports_temperature=True,
|
||||
temperature_constraint=create_temperature_constraint("range"),
|
||||
description="GROK-3 Fast (131K context) - Higher performance variant, faster processing but more expensive",
|
||||
aliases=["grok3fast", "grokfast", "grok3-fast"],
|
||||
),
|
||||
}
|
||||
|
||||
def __init__(self, api_key: str, **kwargs):
|
||||
@@ -49,7 +68,7 @@ class XAIModelProvider(OpenAICompatibleProvider):
|
||||
# Resolve shorthand
|
||||
resolved_name = self._resolve_model_name(model_name)
|
||||
|
||||
if resolved_name not in self.SUPPORTED_MODELS or isinstance(self.SUPPORTED_MODELS[resolved_name], str):
|
||||
if resolved_name not in self.SUPPORTED_MODELS:
|
||||
raise ValueError(f"Unsupported X.AI model: {model_name}")
|
||||
|
||||
# Check if model is allowed by restrictions
|
||||
@@ -59,23 +78,8 @@ class XAIModelProvider(OpenAICompatibleProvider):
|
||||
if not restriction_service.is_allowed(ProviderType.XAI, resolved_name, model_name):
|
||||
raise ValueError(f"X.AI model '{model_name}' is not allowed by restriction policy.")
|
||||
|
||||
config = self.SUPPORTED_MODELS[resolved_name]
|
||||
|
||||
# Define temperature constraints for GROK models
|
||||
# GROK supports the standard OpenAI temperature range
|
||||
temp_constraint = RangeTemperatureConstraint(0.0, 2.0, 0.7)
|
||||
|
||||
return ModelCapabilities(
|
||||
provider=ProviderType.XAI,
|
||||
model_name=resolved_name,
|
||||
friendly_name=self.FRIENDLY_NAME,
|
||||
context_window=config["context_window"],
|
||||
supports_extended_thinking=config["supports_extended_thinking"],
|
||||
supports_system_prompts=True,
|
||||
supports_streaming=True,
|
||||
supports_function_calling=True,
|
||||
temperature_constraint=temp_constraint,
|
||||
)
|
||||
# Return the ModelCapabilities object directly from SUPPORTED_MODELS
|
||||
return self.SUPPORTED_MODELS[resolved_name]
|
||||
|
||||
def get_provider_type(self) -> ProviderType:
|
||||
"""Get the provider type."""
|
||||
@@ -86,7 +90,7 @@ class XAIModelProvider(OpenAICompatibleProvider):
|
||||
resolved_name = self._resolve_model_name(model_name)
|
||||
|
||||
# First check if model is supported
|
||||
if resolved_name not in self.SUPPORTED_MODELS or not isinstance(self.SUPPORTED_MODELS[resolved_name], dict):
|
||||
if resolved_name not in self.SUPPORTED_MODELS:
|
||||
return False
|
||||
|
||||
# Then check if model is allowed by restrictions
|
||||
@@ -127,61 +131,3 @@ class XAIModelProvider(OpenAICompatibleProvider):
|
||||
# Currently GROK models do not support extended thinking
|
||||
# This may change with future GROK model releases
|
||||
return False
|
||||
|
||||
def list_models(self, respect_restrictions: bool = True) -> list[str]:
|
||||
"""Return a list of model names supported by this provider.
|
||||
|
||||
Args:
|
||||
respect_restrictions: Whether to apply provider-specific restriction logic.
|
||||
|
||||
Returns:
|
||||
List of model names available from this provider
|
||||
"""
|
||||
from utils.model_restrictions import get_restriction_service
|
||||
|
||||
restriction_service = get_restriction_service() if respect_restrictions else None
|
||||
models = []
|
||||
|
||||
for model_name, config in self.SUPPORTED_MODELS.items():
|
||||
# Handle both base models (dict configs) and aliases (string values)
|
||||
if isinstance(config, str):
|
||||
# This is an alias - check if the target model would be allowed
|
||||
target_model = config
|
||||
if restriction_service and not restriction_service.is_allowed(self.get_provider_type(), target_model):
|
||||
continue
|
||||
# Allow the alias
|
||||
models.append(model_name)
|
||||
else:
|
||||
# This is a base model with config dict
|
||||
# Check restrictions if enabled
|
||||
if restriction_service and not restriction_service.is_allowed(self.get_provider_type(), model_name):
|
||||
continue
|
||||
models.append(model_name)
|
||||
|
||||
return models
|
||||
|
||||
def list_all_known_models(self) -> list[str]:
|
||||
"""Return all model names known by this provider, including alias targets.
|
||||
|
||||
Returns:
|
||||
List of all model names and alias targets known by this provider
|
||||
"""
|
||||
all_models = set()
|
||||
|
||||
for model_name, config in self.SUPPORTED_MODELS.items():
|
||||
# Add the model name itself
|
||||
all_models.add(model_name.lower())
|
||||
|
||||
# If it's an alias (string value), add the target model too
|
||||
if isinstance(config, str):
|
||||
all_models.add(config.lower())
|
||||
|
||||
return list(all_models)
|
||||
|
||||
def _resolve_model_name(self, model_name: str) -> str:
|
||||
"""Resolve model shorthand to full name."""
|
||||
# Check if it's a shorthand
|
||||
shorthand_value = self.SUPPORTED_MODELS.get(model_name)
|
||||
if isinstance(shorthand_value, str):
|
||||
return shorthand_value
|
||||
return model_name
|
||||
|
||||
Reference in New Issue
Block a user