Use ModelCapabilities consistently instead of dictionaries
Moved aliases as part of SUPPORTED_MODELS instead of shorthand, more in line with how custom_models are declared Further refactoring to cleanup some code
This commit is contained in:
@@ -17,71 +17,110 @@ logger = logging.getLogger(__name__)
|
||||
class OpenAIModelProvider(OpenAICompatibleProvider):
|
||||
"""Official OpenAI API provider (api.openai.com)."""
|
||||
|
||||
# Model configurations
|
||||
# Model configurations using ModelCapabilities objects
|
||||
SUPPORTED_MODELS = {
|
||||
"o3": {
|
||||
"context_window": 200_000, # 200K tokens
|
||||
"supports_extended_thinking": False,
|
||||
"supports_images": True, # O3 models support vision
|
||||
"max_image_size_mb": 20.0, # 20MB per OpenAI docs
|
||||
"supports_temperature": False, # O3 models don't accept temperature parameter
|
||||
"temperature_constraint": "fixed", # Fixed at 1.0
|
||||
"description": "Strong reasoning (200K context) - Logical problems, code generation, systematic analysis",
|
||||
},
|
||||
"o3-mini": {
|
||||
"context_window": 200_000, # 200K tokens
|
||||
"supports_extended_thinking": False,
|
||||
"supports_images": True, # O3 models support vision
|
||||
"max_image_size_mb": 20.0, # 20MB per OpenAI docs
|
||||
"supports_temperature": False, # O3 models don't accept temperature parameter
|
||||
"temperature_constraint": "fixed", # Fixed at 1.0
|
||||
"description": "Fast O3 variant (200K context) - Balanced performance/speed, moderate complexity",
|
||||
},
|
||||
"o3-pro-2025-06-10": {
|
||||
"context_window": 200_000, # 200K tokens
|
||||
"supports_extended_thinking": False,
|
||||
"supports_images": True, # O3 models support vision
|
||||
"max_image_size_mb": 20.0, # 20MB per OpenAI docs
|
||||
"supports_temperature": False, # O3 models don't accept temperature parameter
|
||||
"temperature_constraint": "fixed", # Fixed at 1.0
|
||||
"description": "Professional-grade reasoning (200K context) - EXTREMELY EXPENSIVE: Only for the most complex problems requiring universe-scale complexity analysis OR when the user explicitly asks for this model. Use sparingly for critical architectural decisions or exceptionally complex debugging that other models cannot handle.",
|
||||
},
|
||||
# Aliases
|
||||
"o3-pro": "o3-pro-2025-06-10",
|
||||
"o4-mini": {
|
||||
"context_window": 200_000, # 200K tokens
|
||||
"supports_extended_thinking": False,
|
||||
"supports_images": True, # O4 models support vision
|
||||
"max_image_size_mb": 20.0, # 20MB per OpenAI docs
|
||||
"supports_temperature": False, # O4 models don't accept temperature parameter
|
||||
"temperature_constraint": "fixed", # Fixed at 1.0
|
||||
"description": "Latest reasoning model (200K context) - Optimized for shorter contexts, rapid reasoning",
|
||||
},
|
||||
"o4-mini-high": {
|
||||
"context_window": 200_000, # 200K tokens
|
||||
"supports_extended_thinking": False,
|
||||
"supports_images": True, # O4 models support vision
|
||||
"max_image_size_mb": 20.0, # 20MB per OpenAI docs
|
||||
"supports_temperature": False, # O4 models don't accept temperature parameter
|
||||
"temperature_constraint": "fixed", # Fixed at 1.0
|
||||
"description": "Enhanced O4 mini (200K context) - Higher reasoning effort for complex tasks",
|
||||
},
|
||||
"gpt-4.1-2025-04-14": {
|
||||
"context_window": 1_000_000, # 1M tokens
|
||||
"supports_extended_thinking": False,
|
||||
"supports_images": True, # GPT-4.1 supports vision
|
||||
"max_image_size_mb": 20.0, # 20MB per OpenAI docs
|
||||
"supports_temperature": True, # Regular models accept temperature parameter
|
||||
"temperature_constraint": "range", # 0.0-2.0 range
|
||||
"description": "GPT-4.1 (1M context) - Advanced reasoning model with large context window",
|
||||
},
|
||||
# Shorthands
|
||||
"mini": "o4-mini", # Default 'mini' to latest mini model
|
||||
"o3mini": "o3-mini",
|
||||
"o4mini": "o4-mini",
|
||||
"o4minihigh": "o4-mini-high",
|
||||
"o4minihi": "o4-mini-high",
|
||||
"gpt4.1": "gpt-4.1-2025-04-14",
|
||||
"o3": ModelCapabilities(
|
||||
provider=ProviderType.OPENAI,
|
||||
model_name="o3",
|
||||
friendly_name="OpenAI (O3)",
|
||||
context_window=200_000, # 200K tokens
|
||||
supports_extended_thinking=False,
|
||||
supports_system_prompts=True,
|
||||
supports_streaming=True,
|
||||
supports_function_calling=True,
|
||||
supports_json_mode=True,
|
||||
supports_images=True, # O3 models support vision
|
||||
max_image_size_mb=20.0, # 20MB per OpenAI docs
|
||||
supports_temperature=False, # O3 models don't accept temperature parameter
|
||||
temperature_constraint=create_temperature_constraint("fixed"),
|
||||
description="Strong reasoning (200K context) - Logical problems, code generation, systematic analysis",
|
||||
aliases=[],
|
||||
),
|
||||
"o3-mini": ModelCapabilities(
|
||||
provider=ProviderType.OPENAI,
|
||||
model_name="o3-mini",
|
||||
friendly_name="OpenAI (O3-mini)",
|
||||
context_window=200_000, # 200K tokens
|
||||
supports_extended_thinking=False,
|
||||
supports_system_prompts=True,
|
||||
supports_streaming=True,
|
||||
supports_function_calling=True,
|
||||
supports_json_mode=True,
|
||||
supports_images=True, # O3 models support vision
|
||||
max_image_size_mb=20.0, # 20MB per OpenAI docs
|
||||
supports_temperature=False, # O3 models don't accept temperature parameter
|
||||
temperature_constraint=create_temperature_constraint("fixed"),
|
||||
description="Fast O3 variant (200K context) - Balanced performance/speed, moderate complexity",
|
||||
aliases=["o3mini", "o3-mini"],
|
||||
),
|
||||
"o3-pro-2025-06-10": ModelCapabilities(
|
||||
provider=ProviderType.OPENAI,
|
||||
model_name="o3-pro-2025-06-10",
|
||||
friendly_name="OpenAI (O3-Pro)",
|
||||
context_window=200_000, # 200K tokens
|
||||
supports_extended_thinking=False,
|
||||
supports_system_prompts=True,
|
||||
supports_streaming=True,
|
||||
supports_function_calling=True,
|
||||
supports_json_mode=True,
|
||||
supports_images=True, # O3 models support vision
|
||||
max_image_size_mb=20.0, # 20MB per OpenAI docs
|
||||
supports_temperature=False, # O3 models don't accept temperature parameter
|
||||
temperature_constraint=create_temperature_constraint("fixed"),
|
||||
description="Professional-grade reasoning (200K context) - EXTREMELY EXPENSIVE: Only for the most complex problems requiring universe-scale complexity analysis OR when the user explicitly asks for this model. Use sparingly for critical architectural decisions or exceptionally complex debugging that other models cannot handle.",
|
||||
aliases=["o3-pro"],
|
||||
),
|
||||
"o4-mini": ModelCapabilities(
|
||||
provider=ProviderType.OPENAI,
|
||||
model_name="o4-mini",
|
||||
friendly_name="OpenAI (O4-mini)",
|
||||
context_window=200_000, # 200K tokens
|
||||
supports_extended_thinking=False,
|
||||
supports_system_prompts=True,
|
||||
supports_streaming=True,
|
||||
supports_function_calling=True,
|
||||
supports_json_mode=True,
|
||||
supports_images=True, # O4 models support vision
|
||||
max_image_size_mb=20.0, # 20MB per OpenAI docs
|
||||
supports_temperature=False, # O4 models don't accept temperature parameter
|
||||
temperature_constraint=create_temperature_constraint("fixed"),
|
||||
description="Latest reasoning model (200K context) - Optimized for shorter contexts, rapid reasoning",
|
||||
aliases=["mini", "o4mini"],
|
||||
),
|
||||
"o4-mini-high": ModelCapabilities(
|
||||
provider=ProviderType.OPENAI,
|
||||
model_name="o4-mini-high",
|
||||
friendly_name="OpenAI (O4-mini-high)",
|
||||
context_window=200_000, # 200K tokens
|
||||
supports_extended_thinking=False,
|
||||
supports_system_prompts=True,
|
||||
supports_streaming=True,
|
||||
supports_function_calling=True,
|
||||
supports_json_mode=True,
|
||||
supports_images=True, # O4 models support vision
|
||||
max_image_size_mb=20.0, # 20MB per OpenAI docs
|
||||
supports_temperature=False, # O4 models don't accept temperature parameter
|
||||
temperature_constraint=create_temperature_constraint("fixed"),
|
||||
description="Enhanced O4 mini (200K context) - Higher reasoning effort for complex tasks",
|
||||
aliases=["o4minihigh", "o4minihi", "mini-high"],
|
||||
),
|
||||
"gpt-4.1-2025-04-14": ModelCapabilities(
|
||||
provider=ProviderType.OPENAI,
|
||||
model_name="gpt-4.1-2025-04-14",
|
||||
friendly_name="OpenAI (GPT 4.1)",
|
||||
context_window=1_000_000, # 1M tokens
|
||||
supports_extended_thinking=False,
|
||||
supports_system_prompts=True,
|
||||
supports_streaming=True,
|
||||
supports_function_calling=True,
|
||||
supports_json_mode=True,
|
||||
supports_images=True, # GPT-4.1 supports vision
|
||||
max_image_size_mb=20.0, # 20MB per OpenAI docs
|
||||
supports_temperature=True, # Regular models accept temperature parameter
|
||||
temperature_constraint=create_temperature_constraint("range"),
|
||||
description="GPT-4.1 (1M context) - Advanced reasoning model with large context window",
|
||||
aliases=["gpt4.1"],
|
||||
),
|
||||
}
|
||||
|
||||
def __init__(self, api_key: str, **kwargs):
|
||||
@@ -95,7 +134,7 @@ class OpenAIModelProvider(OpenAICompatibleProvider):
|
||||
# Resolve shorthand
|
||||
resolved_name = self._resolve_model_name(model_name)
|
||||
|
||||
if resolved_name not in self.SUPPORTED_MODELS or isinstance(self.SUPPORTED_MODELS[resolved_name], str):
|
||||
if resolved_name not in self.SUPPORTED_MODELS:
|
||||
raise ValueError(f"Unsupported OpenAI model: {model_name}")
|
||||
|
||||
# Check if model is allowed by restrictions
|
||||
@@ -105,27 +144,8 @@ class OpenAIModelProvider(OpenAICompatibleProvider):
|
||||
if not restriction_service.is_allowed(ProviderType.OPENAI, resolved_name, model_name):
|
||||
raise ValueError(f"OpenAI model '{model_name}' is not allowed by restriction policy.")
|
||||
|
||||
config = self.SUPPORTED_MODELS[resolved_name]
|
||||
|
||||
# Get temperature constraints and support from configuration
|
||||
supports_temperature = config.get("supports_temperature", True) # Default to True for backward compatibility
|
||||
temp_constraint_type = config.get("temperature_constraint", "range") # Default to range
|
||||
temp_constraint = create_temperature_constraint(temp_constraint_type)
|
||||
|
||||
return ModelCapabilities(
|
||||
provider=ProviderType.OPENAI,
|
||||
model_name=model_name,
|
||||
friendly_name="OpenAI",
|
||||
context_window=config["context_window"],
|
||||
supports_extended_thinking=config["supports_extended_thinking"],
|
||||
supports_system_prompts=True,
|
||||
supports_streaming=True,
|
||||
supports_function_calling=True,
|
||||
supports_images=config.get("supports_images", False),
|
||||
max_image_size_mb=config.get("max_image_size_mb", 0.0),
|
||||
supports_temperature=supports_temperature,
|
||||
temperature_constraint=temp_constraint,
|
||||
)
|
||||
# Return the ModelCapabilities object directly from SUPPORTED_MODELS
|
||||
return self.SUPPORTED_MODELS[resolved_name]
|
||||
|
||||
def get_provider_type(self) -> ProviderType:
|
||||
"""Get the provider type."""
|
||||
@@ -136,7 +156,7 @@ class OpenAIModelProvider(OpenAICompatibleProvider):
|
||||
resolved_name = self._resolve_model_name(model_name)
|
||||
|
||||
# First check if model is supported
|
||||
if resolved_name not in self.SUPPORTED_MODELS or not isinstance(self.SUPPORTED_MODELS[resolved_name], dict):
|
||||
if resolved_name not in self.SUPPORTED_MODELS:
|
||||
return False
|
||||
|
||||
# Then check if model is allowed by restrictions
|
||||
@@ -177,61 +197,3 @@ class OpenAIModelProvider(OpenAICompatibleProvider):
|
||||
# Currently no OpenAI models support extended thinking
|
||||
# This may change with future O3 models
|
||||
return False
|
||||
|
||||
def list_models(self, respect_restrictions: bool = True) -> list[str]:
|
||||
"""Return a list of model names supported by this provider.
|
||||
|
||||
Args:
|
||||
respect_restrictions: Whether to apply provider-specific restriction logic.
|
||||
|
||||
Returns:
|
||||
List of model names available from this provider
|
||||
"""
|
||||
from utils.model_restrictions import get_restriction_service
|
||||
|
||||
restriction_service = get_restriction_service() if respect_restrictions else None
|
||||
models = []
|
||||
|
||||
for model_name, config in self.SUPPORTED_MODELS.items():
|
||||
# Handle both base models (dict configs) and aliases (string values)
|
||||
if isinstance(config, str):
|
||||
# This is an alias - check if the target model would be allowed
|
||||
target_model = config
|
||||
if restriction_service and not restriction_service.is_allowed(self.get_provider_type(), target_model):
|
||||
continue
|
||||
# Allow the alias
|
||||
models.append(model_name)
|
||||
else:
|
||||
# This is a base model with config dict
|
||||
# Check restrictions if enabled
|
||||
if restriction_service and not restriction_service.is_allowed(self.get_provider_type(), model_name):
|
||||
continue
|
||||
models.append(model_name)
|
||||
|
||||
return models
|
||||
|
||||
def list_all_known_models(self) -> list[str]:
|
||||
"""Return all model names known by this provider, including alias targets.
|
||||
|
||||
Returns:
|
||||
List of all model names and alias targets known by this provider
|
||||
"""
|
||||
all_models = set()
|
||||
|
||||
for model_name, config in self.SUPPORTED_MODELS.items():
|
||||
# Add the model name itself
|
||||
all_models.add(model_name.lower())
|
||||
|
||||
# If it's an alias (string value), add the target model too
|
||||
if isinstance(config, str):
|
||||
all_models.add(config.lower())
|
||||
|
||||
return list(all_models)
|
||||
|
||||
def _resolve_model_name(self, model_name: str) -> str:
|
||||
"""Resolve model shorthand to full name."""
|
||||
# Check if it's a shorthand
|
||||
shorthand_value = self.SUPPORTED_MODELS.get(model_name)
|
||||
if isinstance(shorthand_value, str):
|
||||
return shorthand_value
|
||||
return model_name
|
||||
|
||||
Reference in New Issue
Block a user