Migration from Docker to Standalone Python Server (#73)

* Migration from docker to standalone server
Migration handling
Fixed tests
Use simpler in-memory storage
Support for concurrent logging to disk
Simplified direct connections to localhost

* Migration from docker / redis to standalone script
Updated tests
Updated run script
Fixed requirements
Use dotenv
Ask if user would like to install MCP in Claude Desktop once
Updated docs

* More cleanup and references to docker removed

* Cleanup

* Comments

* Fixed tests

* Fix GitHub Actions workflow for standalone Python architecture

- Install requirements-dev.txt for pytest and testing dependencies
- Remove Docker setup from simulation tests (now standalone)
- Simplify linting job to use requirements-dev.txt
- Update simulation tests to run directly without Docker

Fixes unit test failures in CI due to missing pytest dependency.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* Remove simulation tests from GitHub Actions

- Removed simulation-tests job that makes real API calls
- Keep only unit tests (mocked, no API costs) and linting
- Simulation tests should be run manually with real API keys
- Reduces CI costs and complexity

GitHub Actions now only runs:
- Unit tests (569 tests, all mocked)
- Code quality checks (ruff, black)

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* Fixed tests

* Fixed tests

---------

Co-authored-by: Claude <noreply@anthropic.com>
This commit is contained in:
Beehive Innovations
2025-06-18 23:41:22 +04:00
committed by GitHub
parent 9d72545ecd
commit 4151c3c3a5
121 changed files with 2842 additions and 3168 deletions

View File

@@ -80,7 +80,7 @@ OPENROUTER_API_KEY=your-openrouter-api-key
> **Note:** Control which models can be used directly in your OpenRouter dashboard at [openrouter.ai](https://openrouter.ai/).
> This gives you centralized control over model access and spending limits.
That's it! Docker Compose already includes all necessary configuration.
That's it! The setup script handles all necessary configuration automatically.
### Option 2: Custom API Setup (Ollama, vLLM, etc.)
@@ -102,49 +102,46 @@ python -m vllm.entrypoints.openai.api_server --model meta-llama/Llama-2-7b-chat-
#### 2. Configure Environment Variables
```bash
# Add to your .env file
CUSTOM_API_URL=http://host.docker.internal:11434/v1 # Ollama example
CUSTOM_API_URL=http://localhost:11434/v1 # Ollama example
CUSTOM_API_KEY= # Empty for Ollama (no auth needed)
CUSTOM_MODEL_NAME=llama3.2 # Default model to use
```
**Important: Docker URL Configuration**
**Local Model Connection**
Since the Zen MCP server always runs in Docker, you must use `host.docker.internal` instead of `localhost` to connect to local models running on your host machine:
The Zen MCP server runs natively, so you can use standard localhost URLs to connect to local models:
```bash
# For Ollama, vLLM, LM Studio, etc. running on your host machine
CUSTOM_API_URL=http://host.docker.internal:11434/v1 # Ollama default port (NOT localhost!)
# For Ollama, vLLM, LM Studio, etc. running on your machine
CUSTOM_API_URL=http://localhost:11434/v1 # Ollama default port
```
**Never use:** `http://localhost:11434/v1` - Docker containers cannot reach localhost
**Always use:** `http://host.docker.internal:11434/v1` - This allows Docker to access host services
#### 3. Examples for Different Platforms
**Ollama:**
```bash
CUSTOM_API_URL=http://host.docker.internal:11434/v1
CUSTOM_API_URL=http://localhost:11434/v1
CUSTOM_API_KEY=
CUSTOM_MODEL_NAME=llama3.2
```
**vLLM:**
```bash
CUSTOM_API_URL=http://host.docker.internal:8000/v1
CUSTOM_API_URL=http://localhost:8000/v1
CUSTOM_API_KEY=
CUSTOM_MODEL_NAME=meta-llama/Llama-2-7b-chat-hf
```
**LM Studio:**
```bash
CUSTOM_API_URL=http://host.docker.internal:1234/v1
CUSTOM_API_URL=http://localhost:1234/v1
CUSTOM_API_KEY=lm-studio # Or any value, LM Studio often requires some key
CUSTOM_MODEL_NAME=local-model
```
**text-generation-webui (with OpenAI extension):**
```bash
CUSTOM_API_URL=http://host.docker.internal:5001/v1
CUSTOM_API_URL=http://localhost:5001/v1
CUSTOM_API_KEY=
CUSTOM_MODEL_NAME=your-loaded-model
```