fix: respect custom OpenAI model temperature settings (#245)
- OpenAI provider now checks custom models registry for user configurations - Custom models with supports_temperature=false no longer send temperature to API - Fixes 400 errors for custom o3/gpt-5 models configured without temperature support - Added comprehensive tests to verify the fix works correctly - Maintains backward compatibility with built-in models Fixes #245
This commit is contained in:
14
.claude/commands/fix-github-issue.md
Normal file
14
.claude/commands/fix-github-issue.md
Normal file
@@ -0,0 +1,14 @@
|
||||
Please analyze and fix the GitHub issue: $ARGUMENTS.
|
||||
|
||||
Follow these steps:
|
||||
|
||||
1. Use `gh issue view` to get the issue details
|
||||
2. Understand the problem described in the issue
|
||||
3. Search the codebase for relevant files
|
||||
4. Implement the necessary changes to fix the issue
|
||||
5. Write and run tests to verify the fix
|
||||
6. Ensure code passes linting and type checking
|
||||
7. Create a descriptive commit message
|
||||
8. Push and create a PR
|
||||
|
||||
Remember to use the GitHub CLI (`gh`) for all GitHub-related tasks.
|
||||
@@ -210,6 +210,32 @@ class OpenAIModelProvider(OpenAICompatibleProvider):
|
||||
raise ValueError(f"OpenAI model '{model_name}' is not allowed by restriction policy.")
|
||||
return capabilities
|
||||
|
||||
# Check custom models registry for user-configured OpenAI models
|
||||
try:
|
||||
from .openrouter_registry import OpenRouterModelRegistry
|
||||
|
||||
registry = OpenRouterModelRegistry()
|
||||
config = registry.get_model_config(resolved_name)
|
||||
|
||||
if config and config.provider == ProviderType.OPENAI:
|
||||
# Check if model is allowed by restrictions
|
||||
from utils.model_restrictions import get_restriction_service
|
||||
|
||||
restriction_service = get_restriction_service()
|
||||
if not restriction_service.is_allowed(ProviderType.OPENAI, config.model_name, model_name):
|
||||
raise ValueError(f"OpenAI model '{model_name}' is not allowed by restriction policy.")
|
||||
|
||||
# Update provider type to ensure consistency
|
||||
config.provider = ProviderType.OPENAI
|
||||
return config
|
||||
|
||||
except Exception as e:
|
||||
# Log but don't fail - registry might not be available
|
||||
import logging
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
logger.debug(f"Could not check custom models registry for '{resolved_name}': {e}")
|
||||
|
||||
raise ValueError(f"Unsupported OpenAI model: {model_name}")
|
||||
|
||||
def get_provider_type(self) -> ProviderType:
|
||||
@@ -220,20 +246,40 @@ class OpenAIModelProvider(OpenAICompatibleProvider):
|
||||
"""Validate if the model name is supported and allowed."""
|
||||
resolved_name = self._resolve_model_name(model_name)
|
||||
|
||||
# First check if model is supported
|
||||
if resolved_name not in self.SUPPORTED_MODELS:
|
||||
return False
|
||||
|
||||
# Then check if model is allowed by restrictions
|
||||
# First check if model is in built-in SUPPORTED_MODELS
|
||||
if resolved_name in self.SUPPORTED_MODELS:
|
||||
# Check if model is allowed by restrictions
|
||||
from utils.model_restrictions import get_restriction_service
|
||||
|
||||
restriction_service = get_restriction_service()
|
||||
if not restriction_service.is_allowed(ProviderType.OPENAI, resolved_name, model_name):
|
||||
logger.debug(f"OpenAI model '{model_name}' -> '{resolved_name}' blocked by restrictions")
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
# Check custom models registry for user-configured OpenAI models
|
||||
try:
|
||||
from .openrouter_registry import OpenRouterModelRegistry
|
||||
|
||||
registry = OpenRouterModelRegistry()
|
||||
config = registry.get_model_config(resolved_name)
|
||||
|
||||
if config and config.provider == ProviderType.OPENAI:
|
||||
# Check if model is allowed by restrictions
|
||||
from utils.model_restrictions import get_restriction_service
|
||||
|
||||
restriction_service = get_restriction_service()
|
||||
if not restriction_service.is_allowed(ProviderType.OPENAI, config.model_name, model_name):
|
||||
logger.debug(f"OpenAI custom model '{model_name}' -> '{resolved_name}' blocked by restrictions")
|
||||
return False
|
||||
return True
|
||||
|
||||
except Exception as e:
|
||||
# Log but don't fail - registry might not be available
|
||||
logger.debug(f"Could not check custom models registry for '{resolved_name}': {e}")
|
||||
|
||||
return False
|
||||
|
||||
def generate_content(
|
||||
self,
|
||||
prompt: str,
|
||||
|
||||
281
tests/test_custom_openai_temperature_fix.py
Normal file
281
tests/test_custom_openai_temperature_fix.py
Normal file
@@ -0,0 +1,281 @@
|
||||
"""
|
||||
Test for custom OpenAI models temperature parameter fix.
|
||||
|
||||
This test verifies that custom OpenAI models configured through custom_models.json
|
||||
with supports_temperature=false do not send temperature parameters to the API.
|
||||
This addresses issue #245.
|
||||
"""
|
||||
|
||||
import json
|
||||
import tempfile
|
||||
from pathlib import Path
|
||||
from unittest.mock import Mock, patch
|
||||
|
||||
from providers.openai_provider import OpenAIModelProvider
|
||||
|
||||
|
||||
class TestCustomOpenAITemperatureParameterFix:
|
||||
"""Test custom OpenAI model parameter filtering."""
|
||||
|
||||
def _create_test_config(self, models_config: list[dict]) -> str:
|
||||
"""Create a temporary config file for testing."""
|
||||
config = {"_README": {"description": "Test config"}, "models": models_config}
|
||||
|
||||
temp_file = tempfile.NamedTemporaryFile(mode="w", suffix=".json", delete=False)
|
||||
json.dump(config, temp_file, indent=2)
|
||||
temp_file.close()
|
||||
return temp_file.name
|
||||
|
||||
@patch("utils.model_restrictions.get_restriction_service")
|
||||
@patch("providers.openai_compatible.OpenAI")
|
||||
def test_custom_openai_models_exclude_temperature_from_api_call(self, mock_openai_class, mock_restriction_service):
|
||||
"""Test that custom OpenAI models with supports_temperature=false don't send temperature to the API."""
|
||||
# Create test config with a custom OpenAI model that doesn't support temperature
|
||||
config_models = [
|
||||
{
|
||||
"model_name": "gpt-5-2025-08-07",
|
||||
"provider": "ProviderType.OPENAI",
|
||||
"is_custom": True,
|
||||
"context_window": 400000,
|
||||
"max_output_tokens": 128000,
|
||||
"supports_extended_thinking": True,
|
||||
"supports_json_mode": True,
|
||||
"supports_system_prompts": True,
|
||||
"supports_streaming": True,
|
||||
"supports_function_calling": True,
|
||||
"supports_temperature": False,
|
||||
"temperature_constraint": "fixed",
|
||||
"supports_images": True,
|
||||
"max_image_size_mb": 20.0,
|
||||
"reasoning": {"effort": "low"},
|
||||
"description": "Custom OpenAI GPT-5 test model",
|
||||
}
|
||||
]
|
||||
|
||||
config_path = self._create_test_config(config_models)
|
||||
|
||||
try:
|
||||
# Mock restriction service to allow all models
|
||||
mock_service = Mock()
|
||||
mock_service.is_allowed.return_value = True
|
||||
mock_restriction_service.return_value = mock_service
|
||||
|
||||
# Setup mock client
|
||||
mock_client = Mock()
|
||||
mock_openai_class.return_value = mock_client
|
||||
|
||||
# Setup mock response
|
||||
mock_response = Mock()
|
||||
mock_response.choices = [Mock()]
|
||||
mock_response.choices[0].message.content = "Test response"
|
||||
mock_response.choices[0].finish_reason = "stop"
|
||||
mock_response.model = "gpt-5-2025-08-07"
|
||||
mock_response.id = "test-id"
|
||||
mock_response.created = 1234567890
|
||||
mock_response.usage = Mock()
|
||||
mock_response.usage.prompt_tokens = 10
|
||||
mock_response.usage.completion_tokens = 5
|
||||
mock_response.usage.total_tokens = 15
|
||||
|
||||
mock_client.chat.completions.create.return_value = mock_response
|
||||
|
||||
# Create provider with custom config
|
||||
with patch("providers.openrouter_registry.OpenRouterModelRegistry") as mock_registry_class:
|
||||
# Mock registry to load our test config
|
||||
mock_registry = Mock()
|
||||
mock_registry_class.return_value = mock_registry
|
||||
|
||||
# Mock get_model_config to return our test model
|
||||
from providers.base import ModelCapabilities, ProviderType, create_temperature_constraint
|
||||
|
||||
test_capabilities = ModelCapabilities(
|
||||
provider=ProviderType.OPENAI,
|
||||
model_name="gpt-5-2025-08-07",
|
||||
friendly_name="Custom GPT-5",
|
||||
context_window=400000,
|
||||
max_output_tokens=128000,
|
||||
supports_extended_thinking=True,
|
||||
supports_system_prompts=True,
|
||||
supports_streaming=True,
|
||||
supports_function_calling=True,
|
||||
supports_json_mode=True,
|
||||
supports_images=True,
|
||||
max_image_size_mb=20.0,
|
||||
supports_temperature=False, # This is the key setting
|
||||
temperature_constraint=create_temperature_constraint("fixed"),
|
||||
description="Custom OpenAI GPT-5 test model",
|
||||
)
|
||||
|
||||
mock_registry.get_model_config.return_value = test_capabilities
|
||||
|
||||
provider = OpenAIModelProvider(api_key="test-key")
|
||||
|
||||
# Override model validation to bypass restrictions
|
||||
provider.validate_model_name = lambda name: True
|
||||
|
||||
# Call generate_content with custom model
|
||||
provider.generate_content(
|
||||
prompt="Test prompt", model_name="gpt-5-2025-08-07", temperature=0.5, max_output_tokens=100
|
||||
)
|
||||
|
||||
# Verify the API call was made without temperature or max_tokens
|
||||
mock_client.chat.completions.create.assert_called_once()
|
||||
call_kwargs = mock_client.chat.completions.create.call_args[1]
|
||||
|
||||
assert (
|
||||
"temperature" not in call_kwargs
|
||||
), "Custom OpenAI models with supports_temperature=false should not include temperature parameter"
|
||||
assert (
|
||||
"max_tokens" not in call_kwargs
|
||||
), "Custom OpenAI models with supports_temperature=false should not include max_tokens parameter"
|
||||
assert call_kwargs["model"] == "gpt-5-2025-08-07"
|
||||
assert "messages" in call_kwargs
|
||||
|
||||
finally:
|
||||
# Clean up temp file
|
||||
Path(config_path).unlink(missing_ok=True)
|
||||
|
||||
@patch("utils.model_restrictions.get_restriction_service")
|
||||
@patch("providers.openai_compatible.OpenAI")
|
||||
def test_custom_openai_models_include_temperature_when_supported(self, mock_openai_class, mock_restriction_service):
|
||||
"""Test that custom OpenAI models with supports_temperature=true still send temperature to the API."""
|
||||
# Mock restriction service to allow all models
|
||||
mock_service = Mock()
|
||||
mock_service.is_allowed.return_value = True
|
||||
mock_restriction_service.return_value = mock_service
|
||||
|
||||
# Setup mock client
|
||||
mock_client = Mock()
|
||||
mock_openai_class.return_value = mock_client
|
||||
|
||||
# Setup mock response
|
||||
mock_response = Mock()
|
||||
mock_response.choices = [Mock()]
|
||||
mock_response.choices[0].message.content = "Test response"
|
||||
mock_response.choices[0].finish_reason = "stop"
|
||||
mock_response.model = "gpt-4-custom"
|
||||
mock_response.id = "test-id"
|
||||
mock_response.created = 1234567890
|
||||
mock_response.usage = Mock()
|
||||
mock_response.usage.prompt_tokens = 10
|
||||
mock_response.usage.completion_tokens = 5
|
||||
mock_response.usage.total_tokens = 15
|
||||
|
||||
mock_client.chat.completions.create.return_value = mock_response
|
||||
|
||||
# Create provider with custom config
|
||||
with patch("providers.openrouter_registry.OpenRouterModelRegistry") as mock_registry_class:
|
||||
# Mock registry to load our test config
|
||||
mock_registry = Mock()
|
||||
mock_registry_class.return_value = mock_registry
|
||||
|
||||
# Mock get_model_config to return a model that supports temperature
|
||||
from providers.base import ModelCapabilities, ProviderType, create_temperature_constraint
|
||||
|
||||
test_capabilities = ModelCapabilities(
|
||||
provider=ProviderType.OPENAI,
|
||||
model_name="gpt-4-custom",
|
||||
friendly_name="Custom GPT-4",
|
||||
context_window=128000,
|
||||
max_output_tokens=32000,
|
||||
supports_extended_thinking=False,
|
||||
supports_system_prompts=True,
|
||||
supports_streaming=True,
|
||||
supports_function_calling=True,
|
||||
supports_json_mode=True,
|
||||
supports_images=True,
|
||||
max_image_size_mb=20.0,
|
||||
supports_temperature=True, # This model DOES support temperature
|
||||
temperature_constraint=create_temperature_constraint("range"),
|
||||
description="Custom OpenAI GPT-4 test model",
|
||||
)
|
||||
|
||||
mock_registry.get_model_config.return_value = test_capabilities
|
||||
|
||||
provider = OpenAIModelProvider(api_key="test-key")
|
||||
|
||||
# Override model validation to bypass restrictions
|
||||
provider.validate_model_name = lambda name: True
|
||||
|
||||
# Call generate_content with custom model that supports temperature
|
||||
provider.generate_content(
|
||||
prompt="Test prompt", model_name="gpt-4-custom", temperature=0.5, max_output_tokens=100
|
||||
)
|
||||
|
||||
# Verify the API call was made WITH temperature and max_tokens
|
||||
mock_client.chat.completions.create.assert_called_once()
|
||||
call_kwargs = mock_client.chat.completions.create.call_args[1]
|
||||
|
||||
assert (
|
||||
call_kwargs["temperature"] == 0.5
|
||||
), "Custom OpenAI models with supports_temperature=true should include temperature parameter"
|
||||
assert (
|
||||
call_kwargs["max_tokens"] == 100
|
||||
), "Custom OpenAI models with supports_temperature=true should include max_tokens parameter"
|
||||
assert call_kwargs["model"] == "gpt-4-custom"
|
||||
|
||||
@patch("utils.model_restrictions.get_restriction_service")
|
||||
def test_custom_openai_model_validation(self, mock_restriction_service):
|
||||
"""Test that custom OpenAI models are properly validated."""
|
||||
# Mock restriction service to allow all models
|
||||
mock_service = Mock()
|
||||
mock_service.is_allowed.return_value = True
|
||||
mock_restriction_service.return_value = mock_service
|
||||
|
||||
with patch("providers.openrouter_registry.OpenRouterModelRegistry") as mock_registry_class:
|
||||
# Mock registry to return a custom OpenAI model
|
||||
mock_registry = Mock()
|
||||
mock_registry_class.return_value = mock_registry
|
||||
|
||||
from providers.base import ModelCapabilities, ProviderType, create_temperature_constraint
|
||||
|
||||
test_capabilities = ModelCapabilities(
|
||||
provider=ProviderType.OPENAI,
|
||||
model_name="o3-2025-04-16",
|
||||
friendly_name="Custom O3",
|
||||
context_window=200000,
|
||||
max_output_tokens=65536,
|
||||
supports_extended_thinking=False,
|
||||
supports_system_prompts=True,
|
||||
supports_streaming=True,
|
||||
supports_function_calling=True,
|
||||
supports_json_mode=True,
|
||||
supports_images=True,
|
||||
max_image_size_mb=20.0,
|
||||
supports_temperature=False,
|
||||
temperature_constraint=create_temperature_constraint("fixed"),
|
||||
description="Custom OpenAI O3 test model",
|
||||
)
|
||||
|
||||
mock_registry.get_model_config.return_value = test_capabilities
|
||||
|
||||
provider = OpenAIModelProvider(api_key="test-key")
|
||||
|
||||
# Test that custom model validates successfully
|
||||
assert provider.validate_model_name("o3-2025-04-16") is True
|
||||
|
||||
# Test that get_capabilities returns the custom config
|
||||
capabilities = provider.get_capabilities("o3-2025-04-16")
|
||||
assert capabilities.supports_temperature is False
|
||||
assert capabilities.model_name == "o3-2025-04-16"
|
||||
assert capabilities.provider == ProviderType.OPENAI
|
||||
|
||||
@patch("utils.model_restrictions.get_restriction_service")
|
||||
def test_fallback_to_builtin_models_when_registry_fails(self, mock_restriction_service):
|
||||
"""Test that provider falls back to built-in models when registry fails."""
|
||||
# Mock restriction service to allow all models
|
||||
mock_service = Mock()
|
||||
mock_service.is_allowed.return_value = True
|
||||
mock_restriction_service.return_value = mock_service
|
||||
|
||||
with patch("providers.openrouter_registry.OpenRouterModelRegistry") as mock_registry_class:
|
||||
# Mock registry to raise an exception
|
||||
mock_registry_class.side_effect = Exception("Registry not available")
|
||||
|
||||
provider = OpenAIModelProvider(api_key="test-key")
|
||||
|
||||
# Test that built-in models still work
|
||||
assert provider.validate_model_name("o3-mini") is True
|
||||
|
||||
# Test that unsupported models return false
|
||||
assert provider.validate_model_name("unknown-model") is False
|
||||
83
tests/test_issue_245_simple.py
Normal file
83
tests/test_issue_245_simple.py
Normal file
@@ -0,0 +1,83 @@
|
||||
"""
|
||||
Simple test to verify GitHub issue #245 is fixed.
|
||||
|
||||
Issue: Custom OpenAI models (gpt-5, o3) use temperature despite the config having supports_temperature: false
|
||||
"""
|
||||
|
||||
from unittest.mock import Mock, patch
|
||||
|
||||
from providers.openai_provider import OpenAIModelProvider
|
||||
|
||||
|
||||
def test_issue_245_custom_openai_temperature_ignored():
|
||||
"""Test that reproduces and validates the fix for issue #245."""
|
||||
|
||||
with patch("utils.model_restrictions.get_restriction_service") as mock_restriction:
|
||||
with patch("providers.openai_compatible.OpenAI") as mock_openai:
|
||||
with patch("providers.openrouter_registry.OpenRouterModelRegistry") as mock_registry_class:
|
||||
|
||||
# Mock restriction service
|
||||
mock_service = Mock()
|
||||
mock_service.is_allowed.return_value = True
|
||||
mock_restriction.return_value = mock_service
|
||||
|
||||
# Mock OpenAI client
|
||||
mock_client = Mock()
|
||||
mock_openai.return_value = mock_client
|
||||
mock_response = Mock()
|
||||
mock_response.choices = [Mock()]
|
||||
mock_response.choices[0].message.content = "Test response"
|
||||
mock_response.choices[0].finish_reason = "stop"
|
||||
mock_response.model = "gpt-5-2025-08-07"
|
||||
mock_response.id = "test"
|
||||
mock_response.created = 123
|
||||
mock_response.usage = Mock()
|
||||
mock_response.usage.prompt_tokens = 10
|
||||
mock_response.usage.completion_tokens = 5
|
||||
mock_response.usage.total_tokens = 15
|
||||
mock_client.chat.completions.create.return_value = mock_response
|
||||
|
||||
# Mock registry with user's custom config (the issue scenario)
|
||||
mock_registry = Mock()
|
||||
mock_registry_class.return_value = mock_registry
|
||||
|
||||
from providers.base import ModelCapabilities, ProviderType, create_temperature_constraint
|
||||
|
||||
# This is what the user configured in their custom_models.json
|
||||
custom_config = ModelCapabilities(
|
||||
provider=ProviderType.OPENAI,
|
||||
model_name="gpt-5-2025-08-07",
|
||||
friendly_name="Custom GPT-5",
|
||||
context_window=400000,
|
||||
max_output_tokens=128000,
|
||||
supports_extended_thinking=True,
|
||||
supports_json_mode=True,
|
||||
supports_system_prompts=True,
|
||||
supports_streaming=True,
|
||||
supports_function_calling=True,
|
||||
supports_temperature=False, # User set this to false!
|
||||
temperature_constraint=create_temperature_constraint("fixed"),
|
||||
supports_images=True,
|
||||
max_image_size_mb=20.0,
|
||||
description="Custom OpenAI GPT-5",
|
||||
)
|
||||
mock_registry.get_model_config.return_value = custom_config
|
||||
|
||||
# Create provider and test
|
||||
provider = OpenAIModelProvider(api_key="test-key")
|
||||
provider.validate_model_name = lambda name: True
|
||||
|
||||
# This is what was causing the 400 error before the fix
|
||||
provider.generate_content(
|
||||
prompt="Test", model_name="gpt-5-2025-08-07", temperature=0.2 # This should be ignored!
|
||||
)
|
||||
|
||||
# Verify the fix: NO temperature should be sent to the API
|
||||
call_kwargs = mock_client.chat.completions.create.call_args[1]
|
||||
assert "temperature" not in call_kwargs, "Fix failed: temperature still being sent!"
|
||||
|
||||
print("✅ Issue #245 is FIXED! Temperature parameter correctly ignored for custom models.")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_issue_245_custom_openai_temperature_ignored()
|
||||
Reference in New Issue
Block a user