WIP major refactor and features
This commit is contained in:
163
providers/openai.py
Normal file
163
providers/openai.py
Normal file
@@ -0,0 +1,163 @@
|
||||
"""OpenAI model provider implementation."""
|
||||
|
||||
import os
|
||||
from typing import Dict, Optional, List, Any
|
||||
import logging
|
||||
|
||||
from openai import OpenAI
|
||||
|
||||
from .base import ModelProvider, ModelResponse, ModelCapabilities, ProviderType
|
||||
|
||||
|
||||
class OpenAIModelProvider(ModelProvider):
|
||||
"""OpenAI model provider implementation."""
|
||||
|
||||
# Model configurations
|
||||
SUPPORTED_MODELS = {
|
||||
"o3": {
|
||||
"max_tokens": 200_000, # 200K tokens
|
||||
"supports_extended_thinking": False,
|
||||
},
|
||||
"o3-mini": {
|
||||
"max_tokens": 200_000, # 200K tokens
|
||||
"supports_extended_thinking": False,
|
||||
},
|
||||
}
|
||||
|
||||
def __init__(self, api_key: str, **kwargs):
|
||||
"""Initialize OpenAI provider with API key."""
|
||||
super().__init__(api_key, **kwargs)
|
||||
self._client = None
|
||||
self.base_url = kwargs.get("base_url") # Support custom endpoints
|
||||
self.organization = kwargs.get("organization")
|
||||
|
||||
@property
|
||||
def client(self):
|
||||
"""Lazy initialization of OpenAI client."""
|
||||
if self._client is None:
|
||||
client_kwargs = {"api_key": self.api_key}
|
||||
if self.base_url:
|
||||
client_kwargs["base_url"] = self.base_url
|
||||
if self.organization:
|
||||
client_kwargs["organization"] = self.organization
|
||||
|
||||
self._client = OpenAI(**client_kwargs)
|
||||
return self._client
|
||||
|
||||
def get_capabilities(self, model_name: str) -> ModelCapabilities:
|
||||
"""Get capabilities for a specific OpenAI model."""
|
||||
if model_name not in self.SUPPORTED_MODELS:
|
||||
raise ValueError(f"Unsupported OpenAI model: {model_name}")
|
||||
|
||||
config = self.SUPPORTED_MODELS[model_name]
|
||||
|
||||
return ModelCapabilities(
|
||||
provider=ProviderType.OPENAI,
|
||||
model_name=model_name,
|
||||
friendly_name="OpenAI",
|
||||
max_tokens=config["max_tokens"],
|
||||
supports_extended_thinking=config["supports_extended_thinking"],
|
||||
supports_system_prompts=True,
|
||||
supports_streaming=True,
|
||||
supports_function_calling=True,
|
||||
temperature_range=(0.0, 2.0),
|
||||
)
|
||||
|
||||
def generate_content(
|
||||
self,
|
||||
prompt: str,
|
||||
model_name: str,
|
||||
system_prompt: Optional[str] = None,
|
||||
temperature: float = 0.7,
|
||||
max_output_tokens: Optional[int] = None,
|
||||
**kwargs
|
||||
) -> ModelResponse:
|
||||
"""Generate content using OpenAI model."""
|
||||
# Validate parameters
|
||||
self.validate_parameters(model_name, temperature)
|
||||
|
||||
# Prepare messages
|
||||
messages = []
|
||||
if system_prompt:
|
||||
messages.append({"role": "system", "content": system_prompt})
|
||||
messages.append({"role": "user", "content": prompt})
|
||||
|
||||
# Prepare completion parameters
|
||||
completion_params = {
|
||||
"model": model_name,
|
||||
"messages": messages,
|
||||
"temperature": temperature,
|
||||
}
|
||||
|
||||
# Add max tokens if specified
|
||||
if max_output_tokens:
|
||||
completion_params["max_tokens"] = max_output_tokens
|
||||
|
||||
# Add any additional OpenAI-specific parameters
|
||||
for key, value in kwargs.items():
|
||||
if key in ["top_p", "frequency_penalty", "presence_penalty", "seed", "stop"]:
|
||||
completion_params[key] = value
|
||||
|
||||
try:
|
||||
# Generate completion
|
||||
response = self.client.chat.completions.create(**completion_params)
|
||||
|
||||
# Extract content and usage
|
||||
content = response.choices[0].message.content
|
||||
usage = self._extract_usage(response)
|
||||
|
||||
return ModelResponse(
|
||||
content=content,
|
||||
usage=usage,
|
||||
model_name=model_name,
|
||||
friendly_name="OpenAI",
|
||||
provider=ProviderType.OPENAI,
|
||||
metadata={
|
||||
"finish_reason": response.choices[0].finish_reason,
|
||||
"model": response.model, # Actual model used (in case of fallbacks)
|
||||
"id": response.id,
|
||||
"created": response.created,
|
||||
}
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
# Log error and re-raise with more context
|
||||
error_msg = f"OpenAI API error for model {model_name}: {str(e)}"
|
||||
logging.error(error_msg)
|
||||
raise RuntimeError(error_msg) from e
|
||||
|
||||
def count_tokens(self, text: str, model_name: str) -> int:
|
||||
"""Count tokens for the given text.
|
||||
|
||||
Note: For accurate token counting, we should use tiktoken library.
|
||||
This is a simplified estimation.
|
||||
"""
|
||||
# TODO: Implement proper token counting with tiktoken
|
||||
# For now, use rough estimation
|
||||
# O3 models ~4 chars per token
|
||||
return len(text) // 4
|
||||
|
||||
def get_provider_type(self) -> ProviderType:
|
||||
"""Get the provider type."""
|
||||
return ProviderType.OPENAI
|
||||
|
||||
def validate_model_name(self, model_name: str) -> bool:
|
||||
"""Validate if the model name is supported."""
|
||||
return model_name in self.SUPPORTED_MODELS
|
||||
|
||||
def supports_thinking_mode(self, model_name: str) -> bool:
|
||||
"""Check if the model supports extended thinking mode."""
|
||||
# Currently no OpenAI models support extended thinking
|
||||
# This may change with future O3 models
|
||||
return False
|
||||
|
||||
def _extract_usage(self, response) -> Dict[str, int]:
|
||||
"""Extract token usage from OpenAI response."""
|
||||
usage = {}
|
||||
|
||||
if hasattr(response, "usage") and response.usage:
|
||||
usage["input_tokens"] = response.usage.prompt_tokens
|
||||
usage["output_tokens"] = response.usage.completion_tokens
|
||||
usage["total_tokens"] = response.usage.total_tokens
|
||||
|
||||
return usage
|
||||
Reference in New Issue
Block a user