feat: add Claude-Gemini collaboration and chat capabilities
- Add collaboration demo showing dynamic context requests - Implement chat tool for general conversations and brainstorming - Add tool selection guide with clear boundaries - Introduce models configuration system - Update prompts for better tool descriptions - Refactor server to remove redundant functionality - Add comprehensive tests for collaboration features - Enhance base tool with collaborative features This enables Claude to request additional context from Gemini during tool execution, improving analysis quality and accuracy. 🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
@@ -5,12 +5,15 @@ Base class for all Gemini MCP tools
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Any, Dict, List, Optional, Literal
|
||||
import os
|
||||
import json
|
||||
|
||||
from google import genai
|
||||
from google.genai import types
|
||||
from mcp.types import TextContent
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from .models import ToolOutput, ClarificationRequest
|
||||
|
||||
|
||||
class ToolRequest(BaseModel):
|
||||
"""Base request model for all tools"""
|
||||
@@ -95,25 +98,83 @@ class BaseTool(ABC):
|
||||
# Generate response
|
||||
response = model.generate_content(prompt)
|
||||
|
||||
# Handle response
|
||||
# Handle response and create standardized output
|
||||
if response.candidates and response.candidates[0].content.parts:
|
||||
text = response.candidates[0].content.parts[0].text
|
||||
raw_text = response.candidates[0].content.parts[0].text
|
||||
|
||||
# Check if this is a clarification request
|
||||
tool_output = self._parse_response(raw_text, request)
|
||||
|
||||
else:
|
||||
finish_reason = (
|
||||
response.candidates[0].finish_reason
|
||||
if response.candidates
|
||||
else "Unknown"
|
||||
)
|
||||
text = f"Response blocked or incomplete. Finish reason: {finish_reason}"
|
||||
tool_output = ToolOutput(
|
||||
status="error",
|
||||
content=f"Response blocked or incomplete. Finish reason: {finish_reason}",
|
||||
content_type="text",
|
||||
)
|
||||
|
||||
# Format response
|
||||
formatted_response = self.format_response(text, request)
|
||||
|
||||
return [TextContent(type="text", text=formatted_response)]
|
||||
# Serialize the standardized output as JSON
|
||||
return [TextContent(type="text", text=tool_output.model_dump_json())]
|
||||
|
||||
except Exception as e:
|
||||
error_msg = f"Error in {self.name}: {str(e)}"
|
||||
return [TextContent(type="text", text=error_msg)]
|
||||
error_output = ToolOutput(
|
||||
status="error",
|
||||
content=f"Error in {self.name}: {str(e)}",
|
||||
content_type="text",
|
||||
)
|
||||
return [TextContent(type="text", text=error_output.model_dump_json())]
|
||||
|
||||
def _parse_response(self, raw_text: str, request) -> ToolOutput:
|
||||
"""Parse the raw response and determine if it's a clarification request"""
|
||||
try:
|
||||
# Try to parse as JSON to check for clarification requests
|
||||
potential_json = json.loads(raw_text.strip())
|
||||
|
||||
if (
|
||||
isinstance(potential_json, dict)
|
||||
and potential_json.get("status") == "requires_clarification"
|
||||
):
|
||||
# Validate the clarification request structure
|
||||
clarification = ClarificationRequest(**potential_json)
|
||||
return ToolOutput(
|
||||
status="requires_clarification",
|
||||
content=clarification.model_dump_json(),
|
||||
content_type="json",
|
||||
metadata={
|
||||
"original_request": (
|
||||
request.model_dump()
|
||||
if hasattr(request, "model_dump")
|
||||
else str(request)
|
||||
)
|
||||
},
|
||||
)
|
||||
|
||||
except (json.JSONDecodeError, ValueError, TypeError):
|
||||
# Not a JSON clarification request, treat as normal response
|
||||
pass
|
||||
|
||||
# Normal text response - format using tool-specific formatting
|
||||
formatted_content = self.format_response(raw_text, request)
|
||||
|
||||
# Determine content type based on the formatted content
|
||||
content_type = (
|
||||
"markdown"
|
||||
if any(
|
||||
marker in formatted_content for marker in ["##", "**", "`", "- ", "1. "]
|
||||
)
|
||||
else "text"
|
||||
)
|
||||
|
||||
return ToolOutput(
|
||||
status="success",
|
||||
content=formatted_content,
|
||||
content_type=content_type,
|
||||
metadata={"tool_name": self.name},
|
||||
)
|
||||
|
||||
@abstractmethod
|
||||
async def prepare_prompt(self, request) -> str:
|
||||
|
||||
Reference in New Issue
Block a user