refactor: renaming to reflect underlying type

docs: updated to reflect new modules
This commit is contained in:
Fahad
2025-10-02 09:07:40 +04:00
parent 2b10adcaf2
commit 1dc25f6c3d
18 changed files with 129 additions and 131 deletions

View File

@@ -28,7 +28,7 @@ class ModelProvider(ABC):
"""
# All concrete providers must define their supported models
SUPPORTED_MODELS: dict[str, Any] = {}
MODEL_CAPABILITIES: dict[str, Any] = {}
# Default maximum image size in MB
DEFAULT_MAX_IMAGE_SIZE_MB = 20.0
@@ -147,9 +147,9 @@ class ModelProvider(ABC):
Returns:
Dictionary mapping model names to their ModelCapabilities objects
"""
# Return SUPPORTED_MODELS if it exists (must contain ModelCapabilities objects)
if hasattr(self, "SUPPORTED_MODELS"):
return {k: v for k, v in self.SUPPORTED_MODELS.items() if isinstance(v, ModelCapabilities)}
model_map = getattr(self, "MODEL_CAPABILITIES", None)
if isinstance(model_map, dict) and model_map:
return {k: v for k, v in model_map.items() if isinstance(v, ModelCapabilities)}
return {}
def _resolve_model_name(self, model_name: str) -> str:

View File

@@ -33,7 +33,7 @@ class DIALModelProvider(OpenAICompatibleProvider):
RETRY_DELAYS = [1, 3, 5, 8] # seconds
# Model configurations using ModelCapabilities objects
SUPPORTED_MODELS = {
MODEL_CAPABILITIES = {
"o3-2025-04-16": ModelCapabilities(
provider=ProviderType.DIAL,
model_name="o3-2025-04-16",
@@ -280,7 +280,7 @@ class DIALModelProvider(OpenAICompatibleProvider):
"""
resolved_name = self._resolve_model_name(model_name)
if resolved_name not in self.SUPPORTED_MODELS:
if resolved_name not in self.MODEL_CAPABILITIES:
raise ValueError(f"Unsupported DIAL model: {model_name}")
# Check restrictions
@@ -290,8 +290,8 @@ class DIALModelProvider(OpenAICompatibleProvider):
if not restriction_service.is_allowed(ProviderType.DIAL, resolved_name, model_name):
raise ValueError(f"Model '{model_name}' is not allowed by restriction policy.")
# Return the ModelCapabilities object directly from SUPPORTED_MODELS
return self.SUPPORTED_MODELS[resolved_name]
# Return the ModelCapabilities object directly from MODEL_CAPABILITIES
return self.MODEL_CAPABILITIES[resolved_name]
def get_provider_type(self) -> ProviderType:
"""Get the provider type."""
@@ -308,7 +308,7 @@ class DIALModelProvider(OpenAICompatibleProvider):
"""
resolved_name = self._resolve_model_name(model_name)
if resolved_name not in self.SUPPORTED_MODELS:
if resolved_name not in self.MODEL_CAPABILITIES:
return False
# Check against base class allowed_models if configured

View File

@@ -31,7 +31,7 @@ class GeminiModelProvider(ModelProvider):
"""
# Model configurations using ModelCapabilities objects
SUPPORTED_MODELS = {
MODEL_CAPABILITIES = {
"gemini-2.5-pro": ModelCapabilities(
provider=ProviderType.GOOGLE,
model_name="gemini-2.5-pro",
@@ -154,7 +154,7 @@ class GeminiModelProvider(ModelProvider):
# Resolve shorthand
resolved_name = self._resolve_model_name(model_name)
if resolved_name not in self.SUPPORTED_MODELS:
if resolved_name not in self.MODEL_CAPABILITIES:
raise ValueError(f"Unsupported Gemini model: {model_name}")
# Check if model is allowed by restrictions
@@ -166,8 +166,8 @@ class GeminiModelProvider(ModelProvider):
if not restriction_service.is_allowed(ProviderType.GOOGLE, resolved_name, model_name):
raise ValueError(f"Gemini model '{resolved_name}' is not allowed by restriction policy.")
# Return the ModelCapabilities object directly from SUPPORTED_MODELS
return self.SUPPORTED_MODELS[resolved_name]
# Return the ModelCapabilities object directly from MODEL_CAPABILITIES
return self.MODEL_CAPABILITIES[resolved_name]
def generate_content(
self,
@@ -227,7 +227,7 @@ class GeminiModelProvider(ModelProvider):
# Add thinking configuration for models that support it
if capabilities.supports_extended_thinking and thinking_mode in self.THINKING_BUDGETS:
# Get model's max thinking tokens and calculate actual budget
model_config = self.SUPPORTED_MODELS.get(resolved_name)
model_config = self.MODEL_CAPABILITIES.get(resolved_name)
if model_config and model_config.max_thinking_tokens > 0:
max_thinking_tokens = model_config.max_thinking_tokens
actual_thinking_budget = int(max_thinking_tokens * self.THINKING_BUDGETS[thinking_mode])
@@ -382,7 +382,7 @@ class GeminiModelProvider(ModelProvider):
resolved_name = self._resolve_model_name(model_name)
# First check if model is supported
if resolved_name not in self.SUPPORTED_MODELS:
if resolved_name not in self.MODEL_CAPABILITIES:
return False
# Then check if model is allowed by restrictions
@@ -405,7 +405,7 @@ class GeminiModelProvider(ModelProvider):
def get_thinking_budget(self, model_name: str, thinking_mode: str) -> int:
"""Get actual thinking token budget for a model and thinking mode."""
resolved_name = self._resolve_model_name(model_name)
model_config = self.SUPPORTED_MODELS.get(resolved_name)
model_config = self.MODEL_CAPABILITIES.get(resolved_name)
if not model_config or not model_config.supports_extended_thinking:
return 0
@@ -584,7 +584,7 @@ class GeminiModelProvider(ModelProvider):
pro_thinking = [
m
for m in allowed_models
if "pro" in m and m in self.SUPPORTED_MODELS and self.SUPPORTED_MODELS[m].supports_extended_thinking
if "pro" in m and m in self.MODEL_CAPABILITIES and self.MODEL_CAPABILITIES[m].supports_extended_thinking
]
if pro_thinking:
return find_best(pro_thinking)
@@ -593,7 +593,7 @@ class GeminiModelProvider(ModelProvider):
any_thinking = [
m
for m in allowed_models
if m in self.SUPPORTED_MODELS and self.SUPPORTED_MODELS[m].supports_extended_thinking
if m in self.MODEL_CAPABILITIES and self.MODEL_CAPABILITIES[m].supports_extended_thinking
]
if any_thinking:
return find_best(any_thinking)

View File

@@ -26,7 +26,7 @@ class OpenAIModelProvider(OpenAICompatibleProvider):
"""
# Model configurations using ModelCapabilities objects
SUPPORTED_MODELS = {
MODEL_CAPABILITIES = {
"gpt-5": ModelCapabilities(
provider=ProviderType.OPENAI,
model_name="gpt-5",
@@ -181,21 +181,21 @@ class OpenAIModelProvider(OpenAICompatibleProvider):
def get_capabilities(self, model_name: str) -> ModelCapabilities:
"""Get capabilities for a specific OpenAI model."""
# First check if it's a key in SUPPORTED_MODELS
if model_name in self.SUPPORTED_MODELS:
# First check if it's a key in MODEL_CAPABILITIES
if model_name in self.MODEL_CAPABILITIES:
self._check_model_restrictions(model_name, model_name)
return self.SUPPORTED_MODELS[model_name]
return self.MODEL_CAPABILITIES[model_name]
# Try resolving as alias
resolved_name = self._resolve_model_name(model_name)
# Check if resolved name is a key
if resolved_name in self.SUPPORTED_MODELS:
if resolved_name in self.MODEL_CAPABILITIES:
self._check_model_restrictions(resolved_name, model_name)
return self.SUPPORTED_MODELS[resolved_name]
return self.MODEL_CAPABILITIES[resolved_name]
# Finally check if resolved name matches any API model name
for key, capabilities in self.SUPPORTED_MODELS.items():
for key, capabilities in self.MODEL_CAPABILITIES.items():
if resolved_name == capabilities.model_name:
self._check_model_restrictions(key, model_name)
return capabilities
@@ -248,7 +248,7 @@ class OpenAIModelProvider(OpenAICompatibleProvider):
model_to_check = None
is_custom_model = False
if resolved_name in self.SUPPORTED_MODELS:
if resolved_name in self.MODEL_CAPABILITIES:
model_to_check = resolved_name
else:
# If not a built-in model, check the custom models registry.

View File

@@ -282,11 +282,9 @@ class ModelProviderRegistry:
# Use list_models to get all supported models (handles both regular and custom providers)
supported_models = provider.list_models(respect_restrictions=False)
except (NotImplementedError, AttributeError):
# Fallback to SUPPORTED_MODELS if list_models not implemented
try:
supported_models = list(provider.SUPPORTED_MODELS.keys())
except AttributeError:
supported_models = []
# Fallback to provider-declared capability maps if list_models not implemented
model_map = getattr(provider, "MODEL_CAPABILITIES", None)
supported_models = list(model_map.keys()) if isinstance(model_map, dict) else []
# Filter by restrictions
for model_name in supported_models:

View File

@@ -27,7 +27,7 @@ class XAIModelProvider(OpenAICompatibleProvider):
FRIENDLY_NAME = "X.AI"
# Model configurations using ModelCapabilities objects
SUPPORTED_MODELS = {
MODEL_CAPABILITIES = {
"grok-4": ModelCapabilities(
provider=ProviderType.XAI,
model_name="grok-4",
@@ -95,7 +95,7 @@ class XAIModelProvider(OpenAICompatibleProvider):
# Resolve shorthand
resolved_name = self._resolve_model_name(model_name)
if resolved_name not in self.SUPPORTED_MODELS:
if resolved_name not in self.MODEL_CAPABILITIES:
raise ValueError(f"Unsupported X.AI model: {model_name}")
# Check if model is allowed by restrictions
@@ -105,8 +105,8 @@ class XAIModelProvider(OpenAICompatibleProvider):
if not restriction_service.is_allowed(ProviderType.XAI, resolved_name, model_name):
raise ValueError(f"X.AI model '{model_name}' is not allowed by restriction policy.")
# Return the ModelCapabilities object directly from SUPPORTED_MODELS
return self.SUPPORTED_MODELS[resolved_name]
# Return the ModelCapabilities object directly from MODEL_CAPABILITIES
return self.MODEL_CAPABILITIES[resolved_name]
def get_provider_type(self) -> ProviderType:
"""Get the provider type."""
@@ -117,7 +117,7 @@ class XAIModelProvider(OpenAICompatibleProvider):
resolved_name = self._resolve_model_name(model_name)
# First check if model is supported
if resolved_name not in self.SUPPORTED_MODELS:
if resolved_name not in self.MODEL_CAPABILITIES:
return False
# Then check if model is allowed by restrictions
@@ -156,7 +156,7 @@ class XAIModelProvider(OpenAICompatibleProvider):
def supports_thinking_mode(self, model_name: str) -> bool:
"""Check if the model supports extended thinking mode."""
resolved_name = self._resolve_model_name(model_name)
capabilities = self.SUPPORTED_MODELS.get(resolved_name)
capabilities = self.MODEL_CAPABILITIES.get(resolved_name)
if capabilities:
return capabilities.supports_extended_thinking
return False